Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Current Issue
12 | 02 | 2026
2026, 02 February

DOI: 10.14489/td.2026.02.pp.015-028

Makhov V. E., Shirobokov V. V., Emelyanov A. V.
METHODOLOGY FOR IDENTIFYING REMOTE OBJECTS USING A SET OF HETEROGENEOUS FEATURES
(pp. 15-28)

Abstract. Development and testing of a method for using optoelectronic systems with the ability to obtain detailed and spectrophotometric information for small-sized object identification tasks. The study used the illumination characteristics of the observed objects to obtain characteristic features for comparison with base objects. In order to eliminate the influence of distorting factors, a method for identifying remote objects using a set of heterogeneous features was considered. The results were compared with a database of test object features. To assess the reliability of object identification by the algorithms of the method, a metric for comparing the variability of heterogeneous features of the observed and base objects was used. The proposed method for identifying objects was tested based on an experimental model of a hybrid optoelectronic system simulating the operation of ground-based monitoring facilities in near-Earth space. The formation of features of the observed objects is implemented by standard algorithms of the National Instruments Vision Assistant application. It has been established that the proposed technique provides a higher probability of correct identification of the observed objects based on the obtained set of heterogeneous features of low-contrast, barely noticeable remote objects. The ranges of the signal/noise ratio of objects and background, at which the results have the best indicators of the efficiency of object identification, are determined. The proposed technique allows one to evaluate the capabilities of existing optoelectronic systems for identifying remote objects using a set of heterogeneous features in difficult observation conditions, and to form the appearance of promising means of observing barely noticeable objects. The set of developed algorithms for extracting features of the observed objects allows one to identify the objects of interest, as well as to provide a higher probability of their identification. The obtained results form the basis for developing a wide range of hybrid optoelectronic ground-based means of monitoring near-Earth space.

Keywords: differential registration, light field recorder, heterogeneous features, four-dimensional brightness-spectral profile, wavelet transform.

V. E. Makhov, V. V. Shirobokov, A. V. Emelyanov (Mozhaisky Military Space Academy, St. Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Makhov, V. E., Shirobokov, V. V., & Emelyanov, A. V. (2024). Methodology for assessing the effectiveness of optoelectronic systems when observing remote objects. Kontrol'. Diagnostika, 27(3), 42–49. [in Russian language]. https://doi.org/10.14489/td.2024.03.pp.042-049
2. Makhov, V. E., Shirobokov, V. V., Emelyanov, A. V., & Petrushchenko, V. M. (2023). Methodology for assessing the effectiveness of optoelectronic systems for observing remote small-sized low-observable objects. Kontrol'. Diagnostika, 26(11), 16–29. [in Russian language].
3. Krevetsky, A. V., & Chesnokov, S. E. (2002). Encoding and recognition of images of sets of point objects based on physical field models. Avtometriya, 38(3), 80–88. [in Russian language].
4. Fedorenko, D. S. (2021). A model of a space object recognition system taking into account new informative features identified based on spectrophotometry. Voprosy Oboronnoi Tekhniki. Ser. 16. Tekhnicheskie Sredstva Protivodeistviya Terrorizmu, (1-2), 33–39. [in Russian language].
5. Blagodyrenko, E. V., & Korobchenko, I. P. (2020). Methodology for forming multi-angle spectrophotometric portraits of space objects. In 75th Scientific and Technical Conference of the St. Petersburg NTO RES named after A. S. Popov, dedicated to Radio Day, St. Petersburg, April 20-24, 2020 (pp. 76–77). St. Petersburg State Electrotechnical University "LETI" [in Russian language].
6. Makhov, V. E., Shirobokov, V. V., Zakutaev, A. A., et al. (2024). Method for obtaining four-dimensional brightness-spectral profiles of remote objects and device for its implementation (Russian Patent No. RU 2822085 C1). [in Russian language].
7. Makhov, V., Petrushchenko, V., & Sharapova, O. (2023). Visual spectroscopy. Implementation paths. Elektronnye Komponenty, (11), 9–13. [in Russian language].
8. Allington-Smith, J. (2006). Basic principles of integral field spectroscopy. New Astronomy Reviews, 50(4-5), 244–254. https://doi.org/10.1016/j.newar.2006.02.024
9. Terebizh, V. Yu. (2007). Modern optical telescopes. Fizmatlit. [in Russian language].
10. Sizikov, V. S., & Lavrov, A. V. (2018). Modern stable mathematical and software methods for restoring distorted spectra. Nauchno-Tekhnicheskii Vestnik Informatsionnykh Tekhnologii, Mekhaniki i Optiki, 18(6), 911–931. [in Russian language].
11. Sizikov, V. S., & Lavrov, A. V. (2018). Stable methods of mathematical and computer processing of images and spectra. Universitet ITMO. [in Russian language].
12. Makhov, V. E., Shirobokov, V. V., Emelyanov, A. V., & Potapov, A. I. (2022). Study of an optoelectronic system for registering small-sized and low-observable objects under the influence of geometric noise of a matrix photodetector. Vestnik Komp'yuternykh i Informatsionnykh Tekhnologii, 19(11), 3–13. [in Russian language].
13. Klyucharev, A. A. (2003). Data structures and processing algorithms. SPbGUAP. [in Russian language].
14. Dorogov, V. G., & Teplova, Ya. O. (2018). Introduction to methods and algorithms of decision making (L. G. Gagarina, Ed.). Forum-INFRA-M. [in Russian language].
15. Makhov, V. E., Shirobokov, V. V., Emelyanov, A. V., & Potapov, A. I. (2022). Study of algorithms for determining parameters of remote objects in an optoelectronic system using the wavelet transform method. Kontrol'. Diagnostika, 25(4), 20–31. [in Russian language].
16. Makhov, V. E., Shirobokov, V. V., Emelyanov, A. V., et al. (2023). High spatial resolution optoelectronic system for observing remote objects. Kontrol'. Diagnostika, 26(1), 4–13. [in Russian language]. https://doi.org/10.14489/td.2023.01.pp.004-013
17. Bezuglov, D. A., Kuzin, A. P., & Shvidchenko, S. A. (2015). Algorithmic methods of wavelet analysis of images under conditions of a priori uncertainty on a random background. Nauchnoe Obozrenie. Tekhnicheskie Nauki, (1), 71–72. [in Russian language].
18. Lo, E. H. S., Pickering, M., Frater, M., & Arnold, J. (2004). A rotation- and scale-invariant texture recognition method based on the dual-tree complex wavelet transform. In ICIP '04: International Conference on Image Processing (Vol. 1, pp. 227–230).
19. Fernandes, F. C. A., Selesnick, I., van Spaen¬donck, R. L. C., & Burrus, C. S. (2003). Complex wavelet transforms with allpass filters. Signal Processing, 83(8), 1689–1706.
20. Dontsov, A. A., Nagalin, D. A., Pleve, V. V., & Koziratsky, A. A. (2018). Assessment of the detection quality of point and small-sized objects by a wavelet analysis algorithm with an adaptive threshold. Izvestiya TulGU. Tekhnicheskie Nauki, (11), 154–160. [in Russian language].
21. Fedorenko, D. S., Aldokhina, V. N., Lifirenko, V. D., et al. (2023). Methodology for forming a database of reference reflection spectra for monitoring space objects. Uspekhi Sovremennoi Radioelektroniki, 77(4), 22–28. [in Russian language]
22. Lepsky, A. E., & Bronevich, A. G. (2009). Mathematical methods of pattern recognition. Izd-vo TTI YuFU. [in Russian language].
23. Bondarenko, M. A., & Drynkin, V. N. (2016). Assessment of the informativeness of combined images in multispectral machine vision systems. Programmnye Sistemy i Vychislitel'nye Metody, (1), 64–79. [in Russian language] https://doi.org/10.7256/2305-6061.2016.1.18047
24. Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., & Sousa, J. J. (2017). Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing, 9(11), 1110. https://doi.org/10.3390/rs9111110
25. Timkul, V. M., Timkul, L. V., Fesko, Yu. A., et al. (2013). Methodology for calculating the stellar magnitude of the International Space Station. Izvestiya Vuzov. Priborostroenie, 56(5), 5–9. [in Russian language].
26. Ermolaeva, E. V., Zverev, V. A., & Filatov, A. A. (2012). Adaptive optics. NIU ITMO. [in Russian language].
27. Torshina, I. P., & Yakushenkov, Yu. G. (2017). Selection of a radiation receiver when designing an optoelectronic device. Izd-vo MIIGAiK. [in Russian language].
28. Shestakov, K. M. (2012). Laboratory workshop on the special course "Physical foundations of image formation". BGU. [in Russian language].
29. Eliseev, A. V. (2004). An algorithm for processing measurements robust to systematic errors. Izvestiya Vysshikh Uchebnykh Zavedenii. Severo-Kavkazskii Region. Tekhnicheskie Nauki, (3), 19–24. [in Russian language].
30. Kring, D., & Travis, D. (2015). LabVIEW for everyone. DMK-Press. [in Russian language].
31. National Instruments Corporation. (2003). IMAQ Vision for LabVIEW™ user manual (Part Number 322917B-01).
32. Hu, M.-K. (1962). Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 8(3), 179–187.
33. Ostroukh, A. V. (2020). Introduction to artificial intelligence [in Russian language]. Nauchno-Innovatsionnyi Tsentr.
34. Makhov, V. E., Petrushchenko, V. M., Emelyanov, A. V., et al. (2021). Technology for developing software algorithms for optoelectronic systems for observing remote objects. Vestnik Komp'yuternykh i Informatsionnykh Tekhnologii, 18(10), 10–21. [in Russian language]. https://doi.org/10.14489/vkit.2021.10.pp.010-021

This article  is available in electronic format (PDF).

The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2026.02.pp.015-028

and fill out the  form  

 

 

 
Search
Баннер
Баннер
Rambler's Top100 Яндекс цитирования