Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Current Issue
12 | 02 | 2026
2026, 02 February

DOI: 10.14489/td.2026.02.pp.029-038

Gonchar A. V., Kurashkin K. V., Mishakin V. V., Klyushnikov V. A.
WAVEGUIDE ULTRASONIC SENSOR FOR CONTINUOUS MONITORING OF CORROSION AT HIGH TEMPERATURES
(pp. 29-38)

Abstract. The development of reliable technical solution for continuous ultrasonic monitoring of the thickness of technological pipelines and vessels operating at temperatures up to 600 °C is an actual problem, the solution of which is of great practical importance for the import substitution of automated corrosion monitoring systems at Russian enterprises of oil and gas and chemical industries. This paper describes the main stages of creating a domestic analogue of a high-temperature waveguide sensor for ultrasonic thickness measurement. To determine the thickness of objects at different temperatures, a temperature compensation algorithm has been developed and programmatically implemented that takes into account the temperature dependence of the propagation velocity of ultrasonic wave, the thickness of waveguides, the distance between the waveguides at the point of contact with the surface of the object, and the thermal expansion of the waveguide material and the object. The results of laboratory and field tests of an experimental waveguide sensor equipped with a contact-type temperature sensor, the readings of which are processed simultaneously with the received ultrasonic signals, are presented.

Keywords: ultrasonic thickness measurement, high-temperature sensor, temperature dependence of ultrasonic velocity, metal waveguides, corrosion monitoring.

A. V. Gonchar, K. V. Kurashkin, V. V. Mishakin, V. A. Klyushnikov (Mechanical Engineering Research Institute of RAS – the branch of the Federal state budgetary scientific institution “Federal research center A. V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences”, Nizhny Novgorod, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Kishawy, H. A., & Gabbar, H. A. (2010). Review of pipeline integrity management practices. International Journal of Pressure Vessels and Piping, 87, 373–380. https://doi.org/10.1016/j.ijpvp.2010.04.003
2. Mahmoodian, M., & Li, C. Q. (2017). Failure assessment and safe life prediction of corroded oil and gas pipelines. Journal of Petroleum Science and Engineering, 151, 434–438. https://doi.org/10.1016/j.petrol.2016.12.029
3. Montemor, M. F. (2014). Functional and smart coatings for corrosion protection: A review of recent advances. Surface and Coatings Technology, 258(11), 17–37. https://doi.org/10.1016/j.surfcoat.2014.06.031
4. Zapevalov, D. N., & Vagapov, R. K. (2020). Analysis of the use of ultrasonic testing methods within the framework of corrosion monitoring for internal corrosion at gas production facilities in the presence of carbon dioxide. Kontrol'. Diagnostika, (3), 30–35. [in Russian language]. https://doi.org/10.14489/td.2020.03.pp.030-035
5. Samoylov, D. V., Shora, O. I., Kosareva, A. S., & Martynov, S. A. (2016). New functional capabilities of stationary on-line systems for ultrasonic thickness measurement of process pipelines PLANT SAFE-UT. Kontrol'. Diagnostika, (6), 53–56. [in Russian language]. https://doi.org/10.14489/td.2016.06.pp.053-056
6. Klyuev, V. V. (1995). Nerazrushayushchii kontrol' i diagnostika: spravochnik [Non-destructive testing and diagnostics: A handbook]. Mashinostroenie. [in Russian language].
7. Bray, D. E., & Stanley, R. K. (1997). Nondestructive evaluation: A tool in design, manufacturing and service. CRC Press. https://doi.org/10.1201/9781315272993
8. Gonchar, A. V., Mishakin, V. V., Klyushnikov, V. A., et al. (2017). The effect of negative temperatures and damage on the acoustic characteristics of AMg6 alloy. Defektoskopiya, (4), 66–70. [in Russian language].
9. Cawley, P., & Cegla, F. B. (2016). Ultrasonic non-destructive testing (U.S. Patent No. US 9,274,090 B2).
10. Cegla, F. B., & Gajdacsi, A. (2019). Ultrasonic detection of a change in a surface of a wall (U.S. Patent Application Publication No. US 2019/0137453 A1).
11. Gonchar, A. V., & Kurashkin, K. V. (2025). Method for ultrasonic thickness measurement using a high-temperature waveguide-type sensor (Russian Federation Patent No. RU 2842594 C1). [in Russian language].
12. Gonchar, A. V., & Kirillov, A. G. (2024). Program for implementing temperature compensation in ultrasonic thickness measurement using a high-temperature waveguide-type sensor (Certificate of Registration of Computer Program No. RU 2024691630). [in Russian language].

This article  is available in electronic format (PDF).

The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2026.02.pp.029-038

and fill out the  form  

 

 
Search
Баннер
Баннер
Rambler's Top100 Яндекс цитирования