|
DOI: 10.14489/td.2026.02.pp.060-072
Kalashnikova M. V. AUTOMATED GEOGRAPHIC INFORMATION SYSTEM FOR ASSESSING RADON HAZARD IN AN URBANIZED AREA (pp. 60-72)
Abstract. he paper presents the development of a geoinformation system for assessing the potential radon hazard of residential buildings, based on a hybrid approach that integrates gradient boosting (for data detrending, taking into account anthropogenic factors such as the year of construction, foundation type, and material porosity) and ordinary kriging (for spatial estimation of residuals). After the pre-processing stage, which included outlier removal and data transformation, the application of gradient boosting allowed for the elimination non-stationarity and the explanation of 51.52 % of the variance in the average annual equivalent equilibrium volumetric activity of radon and thoron daughter products in the air of residential buildings, taking into account the uncertainty of the estimate. The spatial structure of the residuals was successfully approximated by a spherical variogram model, and their interpolation using ordinary kriging demonstrated acceptable accuracy (MAE = 0.12 normalized units, RMSE = 0.16 normalized units). The additive combination of the results from both models provided.
Keywords: radon measurements, monitoring, potential radon hazard, geoinformation system, kriging method, detrending, gradient boosting.
M. V. Kalashnikova (St. Petersburg State University of Aerospace Instrumentation, St. Petersburg, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Federal Medical-Biological Agency of Russia. (2016). MU 2.6.1.037–2015. Guidelines 2.6.1.037–2015. Determination of the average annual values of the equilibrium equivalent concentration of radon isotopes in indoor air based on measurements of different durations. [in Russian language]. FGUП НТЦ РХБГ ФМБА России. Retrieved May 13, 2024, from https://files.stroyinf.ru/Data2/1/4293746/4293746323.htm 2. Aggarwal, C. C. (2017). Proximity-based outlier detection. In Outlier analysis (2nd ed., pp. 111–147). Springer. https://doi.org/10.1007/978-3-319-47578-3_4 3. Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to data mining. Pearson Addison Wesley. 4. Hyndman, R. J., & Fan, Y. (1996). Sample quantiles in statistical packages. The American Statistician, 50(4), 361–365. https://doi.org/10.1080/00031305.1996.10473566 5. Federal Agency on Technical Regulating and Metrology. (2017). State Standard R ISO 16269-4–2017. Statistical methods. Statistical presentation of data. Part 4. Detection and handling of outliers. [in Russian language]. Standartinform. Retrieved April 2, 2025, from https://docs.cntd.ru/document/1200146680 6. D'yakonov, A. G. (2014). Methods for solving classification problems with categorical features. Prikladnaya Matematika i Informatika: Trudy Fakul'teta VMK MGU im. M. V. Lomonosova, 46, 103–127. [in Russian language]. 7. Samuels, J. (2024). One-hot encoding and two-hot encoding: An introduction. ResearchGate. https://doi.org/10.13140/RG.2.2.21459.76327 8. Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x 9. Starovoitov, V. V., & Golub, Yu. I. (2021). Data normalization in machine learning. Informatika, 18(3), 83–96. [in Russian language] https://doi.org/10.37661/1816-0301-2021-18-3-83-96 10. Gromov, V. A., Yaduta, A. Z., & Gur'yanova, I. V. (2020). Mathematical computations in programming. In Vysokie tekhnologii i innovatsii v nauke: Sbornik izbrannykh statei mezhdunarodnoi nauchnoi konferentsii, Sankt-Peterburg, 28 maya 2020 g. (pp. 254–258). GNII “Natsrazvitie”. [in Russian language] 11. Doğan, N., & Doğan, İ. (2010). Determination of the number of bins/classes used in histograms and frequency tables: A short bibliography. İstatistik Araştırma Dergisi, 7(2), 77–86. 12. Dem'yanov, V. V., & Saveleva, E. A. (2010). Geostatistics: Theory and practice. [in Russian language]. Nauka. 13. Shul'gin, S. G. (2018). Variable selection for analysis and forecasting of instability using gradient boosting models. In Sistemnyi monitoring global'nykh i regional'nykh riskov. Sotsial'no-politicheskaya i ekonomicheskaya destabilizatsiya: analiz stranovykh i regional'nykh situatsii v mir-sistemnom aspekte: Ezhegodnik (Vol. 9, pp. 115–153). Uchitel'. [in Russian language] 14. Deutsch, C. V., & Journel, A. G. (1998). GSLIB: Geostatistical software library and user’s guide (2nd ed.). Oxford University Press. 15. Mazurov, B. T., & Padve, V. A. (2017). The method of least squares (statics, dynamics, models with refined structure). Vestnik SGUGiT, 22(2), 22–35. [in Russian language]
This article is available in electronic format (PDF).
The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2026.02.pp.060-072
and fill out the form
|