Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Current Issue
09 | 05 | 2025
2025, 04 April

DOI: 10.14489/td.2025.04.pp.023-035

Kuvshinnikov K. V., Kovshov E. E.
X-RAY DETECTOR EXPOSURE DIAGRAM APPROXIMATION APPLYING AN ARTIFICIAL NEURAL NETWORK
(pp. 23-35)

Abstract. Nowadays the demand for qualified specialists in non-destructive testing is steadily increasing. In order to develop students' skills of knowledge application necessary for individual practical activity, the training simulator should be equipped with software tools for modelling the results of radiation control. The main approaches to modelling of radiation inspection results and their disadvantages are considered. The method of detector fragment optical density estimation based on approximation of exposure nomographs and sensitometric curves is proposed. The application of the KAN artificial neural network with architecture based on the Kolmogorov-Arnold theorem for approximation tasks is described. The results of computational experiments are given and the relative error of optical density for the considered method is estimated. The proposed solution makes it possible to obtain output values with an accuracy close to the accuracy of the detector technical data, significantly reducing the computational complexity of operations performed during simulation on a graphics processor.

Keywords: software simulator, mathematical modelling, artificial neural network, non-destructive testing, radiation monitoring.

K. V. Kuvshinnikov, E. E. Kovshov (Joint-Stock Company “Research and Development Institute of Construction Technology – Atomstroy”, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Kovshov E. E., Kuvshinnikov V. S., Kazakov D. F. (2021). Formation of an X-ray image of a non-destructive testing object in a virtual reality environment. Kontrol'. Diagnostika, 24(8), 14 – 22. [in Russian language] DOI: 10.14489/td.2021.08.pp.014-022
2. Sarrut D., Bala M., Bardiès M. et al. (2021). Advanced Monte Carlo Simulations of Emission Tomography Imaging Systems with GATE. Physics in Medicine & Biology, 66(10).
3. Pointon J. L., Wen T., Tugwell-Allsup J. et al. (2023). Simulation of X-ray Projections on GPU: Benchmarking gVirtualXray with Clinically Realistic Phantoms. Computer Methods and Programs in Biomedicine, 234.
4. Sanzharov V., Gorbonosov A. I., Frolov V. A., Voloboy A. G. (2019). Examination of the Nvidia RTX. CEUR Workshop Proceedings, 2485, 7 ‒ 12.
5. Nvidia Corporation. (2023). Nvidia Turing GPU Architecture Whitepaper (WP-09183-001_v01). Professional Graphics Solutions and Turing GPU Architecture | NVIDIA. Retrieved from https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
6. Nvidia Corporation. (2023). Nvidia Ada GPU Architecture Whitepaper (V2.02). Ada Lovelace Architecture | NVIDIA: Retrieved from https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
7. Luo W., Fan R., Li Z., Du D. et al. (2024). Benchmarking and Dissecting the Nvidia Hopper Gpu Architecture. arXiv preprint arXiv.
8. Heath R. L. (1957). Scintillation Spectrometry Gammaray Spectrum Catalogue. Phillips Petroleum Company Atomoc Energy Division.
9. Laguitton D., Parrish W. (1977). Experimental Spectral Distribution Versus Kramers’ Law for Quantitative X‐ray Fluorescence by the Fundamental Parameters Method. X‐Ray Spectrometry, 6(4), 201 ‒ 203.
10. Note on NIST X-ray Attenuation Databases. (2024). National Institute of Standards and Technology. Retrieved from https://www.nist.gov/pml/note-nist-x-ray-attenuation-databases (accessed: 23.12.2024).
11. Prohorov A. M. (Ed.) (1988). Physical encyclopedia: in 5 volumes. Vol. 2. Quality factor ‒ Magnetooptics. Moscow: Sovetskaya entsiklopediya. [in Russian language]
12. Booklet X. R. D. (2001). X-ray Data Booklet. Laboratory. California: University California.
13. Zschornack G. H. (2007). Handbook of X-ray Data. Springer Science & Business Media.
14. Otto H. H. (2018). Cauchy Functions Compared to the Gaussian for X-ray Powder Diffraction Line Profile Fitting: An Exercise. Retrieved from Researchgate.net
15. Major G., Shah D., Fernandez V. et al. (2020). Advanced Line Shapes in X-ray Photoelectron Spectroscopy I. The Asymmetric Lorentzian (LA) Line Shape.
16. Kovshov E. E., Kuvshinnikov V. S. (2024). Formation of an image of a control object on a flexible detector in the environment of an industrial radiography simulator. Kontrol'. Diagnostika, 27(3), 23 – 34. [in Russian language] DOI: 10.14489/td.2024.03.pp.023-034
17. Linardatos D., Koukou V., Martini N., et al. (2021). On the Response of a Micro Non-Destructive Testing X-ray Detector. Materials, 14(4).
18. Samei E., Flynn M. J. (2003). An Experimental Comparison of Detector Performance for Direct and Indirect Digital Radiography Systems. Medical Physics, 30(4), 608 ‒ 622.
19. Liu Z., Wang Y., Vaidya S., et al. (2024). Kan: Kolmogorov‒Arnold Networks: arXiv preprint arXiv: 2404.19756.
20. Arnol'd V. I. (1959). On the representation of continuous functions of three variables by superpositions of continuous functions of two variables. Matematicheskiy sbornik, 48(1), 3 ‒ 74. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2025.04.pp.023-035

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования