Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Архив номеров
22 | 12 | 2024
2018, 03 март (March)

DOI: 10.14489/td.2018.03.pp.040-043

Дьяконов А. В., Шелестов Д. А., Артемьев Б. В.
БЫСТРОДЕЙСТВУЮЩИЙ МОНИТОРИНГ ПРОТЯЖЕННЫХ ОБЪЕКТОВ С ПОМОЩЬЮ ВОЛОКОННО-ОПТИЧЕСКИХ СЕНСОРНЫХ СИСТЕМ НА ОСНОВЕ БРЭГГОВСКИХ РЕШЕТОК
(c. 40-43)

Аннотация. Большие объемы информации, получаемой с различных датчиков систем мониторинга, требуют значительных вычислительных ресурсов для ее оперативной обработки и формирования отчетов о состоянии системы для оценки ее остаточного ресурса. С точки зрения контроля температуры и деформации существует несколько подходов: с применением традиционных сенсоров, пьезоэлектрических сенсоров или оптоволоконных сенсорных систем. Проведен анализ возможности контроля с использованием оптических сенсорных систем, построенных на основе брэгговских решеток. Сделан акцент на высокоскоростную (более 10 кГц) цифровую обработку данных после оптико-электронного преобразования.

Ключевые слова:  интеррогатор, брэгговский датчик, волоконно-оптические системы, ПЛИС, метод центроид, гауссова аппроксимация.

 

Diakonov A. V., Shelestov D. A., Artemyev B. V.
HIGHSPEED MONITORING OF EXTENDED OBJECTS USING FIBER-OPTICS SENSOR SYSTEMS BASED ON BRAGG GRATINGS
(pp. 4

Abstract. The need to use various methods of nondestructive testing and technical diagnostics for solving problems of monitoring technical complexes and systems is due to the increase in the number of their structural elements, the complexity of the functioning algorithms, and the aging of equipment in operation by their considerable extent. Large amounts of information obtained from various sensors of monitoring systems require significant computational resources for its rapid processing and generation of reports on the state of the system to assess its residual resource. The choice of the monitored parameters of the object is generally individual and can include a number of physical quantities. In this article, only temperature and deformation are affected. From the point of view of temperature control and deformation, there are several approaches: with the use of traditional sensors of piezoelectric sensors or fiber optic sensor systems. The analysis of control possibility with the help of optic sensor systems based on Bragg gratings was carried out. The article emphasizes high-speed (> 10 kHz) digital signal processing after optoelectronic transformation.

Keywords: interrogator, bragg sensor, fiberoptic systems, FPGA, centroid method, gauss approximation.

Рус

А. В. Дьяконов, Д. А. Шелестов (МГТУ им. Н. Э. Баумана, Москва, Россия; НОЦ «Фотоника и ИК-техника», Москва, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Б. В. Артемьев (МГТУ им. Н. Э. Баумана, Москва, Россия; ЗАО «НИИИН МНПО «СПЕКТР», Москва, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

A. V. Diakonov, D. A. Shelestov (Bauman MSTU; SEC “Photonics & IR-technologies”, Moscow, Russia)
B. V. Artemyev (Bauman MSTU; JSC RII “Spectrum”, Moscow, Russia)

 

Рус

1. Проведение научных экспериментов в наноинженерии / под ред. В. А. Шахнова. М.: Изд-во МГТУ им. Н. Э. Баумана, 2015. 129 с.
2. Федотов М. Ю., Сорокин К. В., Гончаров В. А. и др. Возможности сенсорных систем и интеллектуальных ПКМ на их основе // Все материалы. Энциклопедический справочник. 2013. № 2.
3. Пнев А. Б. Оптико-электронные измерительные системы на основе квазираспределенных волоконно-оптических брэгговских датчиков: дис. … канд. техн. наук. М., 2008. 175 с.
4. Лазарев В. А., Шелестов Д. А. Разработка многоканальных квазираспределенных информационно-измерительных систем на основе наноразмерных волоконно-оптических датчиков механических напряжений // Наука и образование. 2012. № 4.
5. Гармаш В. Б., Егоров Ф. А., Коломиец Л. Н. и др. Возможности, задачи и перспективы волоконно-оптических измерительных систем в современном приборостроении // ФОТОН-ЭКСПРЕСС. 2005. № 6.
6. Варжель С. В. Волоконные брэгговские решетки. СПб.: Университет ИТМО, 2015.
7. Lazarev A. V. Structural monitoring system with fiber Bragg grating sensors: Implementation and software solution // IOP Science. 2015. N 3. URL: http://iopscience.iop.org/1742-6596/594/1/012049
8. Fiber Bragg Gratting | os1100. URL: http://www.micronoptics.com/product/fiber-bragg-grating-os1100/ (дата обращения: 05.10.2017).
9. Веснин В. Л. Метод гауссовской аппроксимации пика спектра отражения волоконно-оптического брэгговского датчика // Известия Самарского научного центра РАН. 2003. Т. 5. № 1.
10. Власов А. И., Назаров А. В. Основы моделирования микро- и наносистем. М.: Изд-во МГТУ им. Н. Э. Баумана, 2011. 142 с. (Б-ка «Наноинженерия». Т. 14).

Eng

1. Shakhnov V. A. (Ed.). (2015). Performing scientific experiments in nanoengineering. Moscow: Izdatel'stvo MGTU im. N. E. Baumana. [in Russian language]
2. Fedotov M. Iu., Sorokin K. V., Goncharov V. A. et al. (2013). The capabilities of sensory systems and intelligent PCM based on the systems. All materials. Encyclopedic handbook. Vol. 2. [in Russian language]
3. Pnev A. B. (2008). Optoelectronic measuring systems based on quasidistributed fiberoptic Bragg sensors. PhD thesis. Moscow. [in Russian language]
4. Lazarev V. A., Shelestov D. A. (2012). Development of multichannel quasidistributed information-measuring systems based on nanoscale fiberoptic sensors of mechanical stresses. Nauka i obrazovanie, (4). [in Russian language]
5. Garmash V. B., Egorov F. A., Kolomiets L. N. et al. (2005). Possibilities, aims and perspectives of fiberoptic measuring systems in modern instrument engineering. FOTON-EKSPRESS, (6). [in Russian language]
6. Varzhel' S. V. (2015). Fiber Bragg gratings. St. Petersburg: Universitet ITMO. [in Russian language]
7. Lazarev A. V. (2015). Structural monitoring system with fiber Bragg grating sensors: Implementation and software solution. IOP Science. (3). Available at: http://iopscience.iop.org/1742-6596/594/1/012049
8. Fiber Bragg Gratting os1100. Avaialble at: http://www.micronoptics.com/product/fiber-bragg-grating-os1100/ (Accessed: 05.10.2017).
9. Vesnin V. L. (2003). Method of Gaussian approximation of the reflection spectrum peak of a fiber-optic Bragg sensor. Izvestiia Samarskogo nauchnogo tsentra RAN, 5(1). [in Russian language]
10. Vlasov A. I., Nazarov A. V. (2011). Basics of modeling of micro and nanosystems. Moscow: Izdatel'stvo MGTU im. N. E. Baumana. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2018.03.pp.040-043

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2018.03.pp.040-043

and fill out the  form  

 

.

 

 
Поиск
На сайте?
Сейчас на сайте находятся:
 234 гостей на сайте
Опросы
Понравился Вам сайт журнала?
 
Rambler's Top100 Яндекс цитирования