Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Архив номеров
22 | 11 | 2024
2018, 10 октябрь (October)

DOI: 10.14489/td.2018.10.pp.038-042

Верещагин В. Ю., Мокрицкий Б. Я., Верещагина А. С.
УПРАВЛЕНИЕ ОБЛАСТЬЮ РАЦИОНАЛЬНОГО ПРИМЕНЕНИЯ МЕТАЛЛОРЕЖУЩЕГО ИНСТРУМЕНТА ПУТЕМ ВИРТУАЛЬНОГО КОНТРОЛЯ ОТКЛОНЕНИЙ ВЫХОДНЫХ ПАРАМЕТРОВ ОТ ЗАДАННЫХ ВЕЛИЧИН И ДИАГНОСТИКИ ТЕХНОЛОГИЧЕСКОЙ СИСТЕМЫ РЕЗАНИЯ
(с. 38-42)

Аннотация. Общепринято контролировать величину фактического измеренного отклонения наблюдаемого параметра технической системы от допускаемого значения. Но это невозможно сделать на этапе проектирования технической системы, когда еще нет фактических деталей и узлов, когда еще нечего измерять. Тем не менее именно на этапе проектирования также важно уметь отбраковывать те варианты проектирования конструкции, которые наименее рациональны с позиций поставленной цели проектирования. На сегодняшнем этапе компьютерного проектирования такие возможности обеспечиваются при виртуальном моделировании технической системы соответствующими программными комплексами, например ANSYS. Рассмотрена возможность такого вариационного проектирования концевых фрез. Это позволило выявить несколько конкурентных вариантов конструкций фрез и их материала. Каждому из вариантов определена рациональная область их применения исходя из виртуальной диагностики поведения элементов технической системы.

Ключевые слова:  величина виртуального отклонения, диагностика поведения системы.

 

Vereshchagin V. Yu., Mokritsky B. Ya., Vereshchagina А. S.
RATIONAL USE OF CUTTING TOOLS THROUGH A VIRTUAL CONTROL DEVIATIONS OF THE OUTPUT PARAMETERS FROM SPECIFIED VALUES AND DIAGNOSTICS OF TECHNOLOGICAL SYSTEMS CUTTING
(pp. 38-42)

Abstract. It is standard to control the size of the actual measured deviation of controlled parameter of technical system from the allowed value. But it can't be made at a design stage of technical system when there are no real details and units when still there is nothing to measure yet. Nevertheless, at a design stage it is also important to be able to reject those variants of construction which are least rational from the position design goal. At today's stage of computer design such opportunities are provided at virtual modeling of technical system. It is provided with the corresponding program complexes, for example ANSYS. The following shows the possibility of such a variable end mill design. This allowed to identify several competitive variants of cutter designs and their material. Each of the options is defined by a rational area of their application based on the virtual diagnosis of the behavior of the elements of the technical system.

Keywords: value of the virtual deviation, diagnostics of a system behavior.

Рус

В. Ю. Верещагин (Новосибирский государственный педагогический университет, Новосибирск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Б. Я. Мокрицкий (Комсомольский-на-Амуре государственный университет, Комсомольск-на-Амуре, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
А. С. Верещагина (Новосибирский государственный технический университет, Новосибирск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

V. Yu. Vereshchagin (Novosibirsk State Pedagogical University, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
B. Ya. Mokritsky (Komsomolsk-on-Amur State University, Komsomolsk-on-Amur, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. S. Vereshchagina (Novosibirsk State Technical University, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Рус

1. Mokritskii B. Y., Morozova A. V., Usova Т. I. Results in Composite Hard-alloy and Mill Design Based on Simulation of Their Operation Conditions // International Conference on Industrial Engineering, ICIE 2017. URL: www.sciencedirect.com ScienceDirect Procedia Engineering 206 (2017) 1093–1098 1877-7058 © 2017 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the scientific committee of the International Conference on Industrial Engineering. DOI: 10.1016/j.proeng.2017.10.600.
2. Vereschaka A. А., Vereschaka А. S., Batako A. D. et al. Improvement of structure and quality of nanoscale multilayered composite coatings, deposited by filtered cathodic vacuum arc deposition method // Nanomaterials and Nanotechnology. 2017. V. 7. DOI: 10.1177/1847980416680805.
3. Vereschaka A. A., Mokritskii B. Ya., Sitnikov N. N. et al. Study of mechanism of failure and wear of multilayered composite nano-structured coating based on system Ti–TiN–(ZrNbTi)N deposited on carbide substrates // Journal of Nano Research. 2017. V. 45. P. 110 – 123.
4. Mokritskii B. Ya., Vereschaka A. A., Volosova M. A. et al. Development of wear-resistant coatings compounds for high-speed steel tool using a combined cathodic vacuum arc deposition // International Journal of Advanced Manufacturing Technology. 2016. V. 84. N 5 – 8. P. 1471 – 1482. DOI: 10.1007/s00170-015-7808-5 10.1007/s00170-015-7808-5 WOS:000376463300059.
5. Mokritskii B. Ya., Vereschaka A. A., Vereschaka A. S. et al. Development and research of nanostructured multilayer composite coatings for tungsten-free carbides with extended area of technological applications // International Journal of Advanced Manufacturing Technology. 2016. April P. 1 – 9. DOI: 10.1007/s00170-016-8739-5.
6. Chandrakanth Shet, Xiaomin Deng. Finite element analysis of the orthogonal metal cutting process // Journal of Materials Processing Technology. 2000. V. 105. P. 95 – 109.
7. Komanduri Z., Hou B. Thermal modeling of the metal cutting process. P. III. Temperature rise distribution due to the combined effects of shear plane heat source and the tool-chip interface frictional heat source // International Journal & Manufacture. 2001. V. 43. P. 89 – 107.
8. Grzesik W. Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique // International Journal of Machine Tools & Manufacture. 2006. V. 46. P. 651 – 658.
9. Atlati S., Haddag B., Nouari M. Zenasni M. Thermomechanical modeling of the tool-work material interface in machining and it simplementation using the ABAQUS VUINTER subroutine // International Journal of Mechanical Sciences. 2014. V. 87. P. 02–117.
10. Buchkremera S., Wub B., Lunga D. et al. FE-simulation of machining processes with a new material model // Journal of Materials Processing Technology. 2014. V. 214. P. 599 – 611.
11. Parle Dattatraya, Singh Ramesh K., Joshi Suhas S., Ravikumar G. V. V. Modeling of microcrack formation in orthogonal machining // International Journal of Machine Tools & Manufacture. V. 80–81. 2014. P. 18 – 29.
12. Haddag B., Nouari M. Tool wear and heat transfer analyses in dry machining based on multisteps numerical modeling and experimental validation // Wear. 2013. V. 302. N 1–2. P. 1158 – 70.
13. Parle Dattatraya, Singh Ramesh K., Joshi Suhas S., Ravikumar G. V. V. Modeling of microcrack formation in orthogonal machining // International Journal of Machine Tools & Manufacture. 2014. V. 80–81. P. 18 – 29.
14. Grzesik W., Nieslony P. A computational approach to evaluate temperature and heat partition in machining with multilayer coated tools // International Journal of Machine Tools & Manufacture. 2003. V. 43. P. 1311 – 1317.
15. Grzesik W., Nieslony P. Physics based modeling of interface temperatures in machining with multiplayer coated tools at moderate cutting speeds // International Journal of Machine Tools & Manufacture. 2004. V. 44. P. 889 – 901.

Eng

1. Mokritskii B. Y., Morozova A. V., Usova Т. I. (2017). Results in Composite Hardalloy and Mill Design Based on Simulation of Their Operation Conditions. International Conference on Industrial Engineering, ICIE 2017. Avilable at: www.sciencedirect.com ScienceDirect Procedia Engineering 206 (2017) 1093–1098 1877-7058 © 2017 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the scientific committee of the International Conference on Industrial Engineering. DOI: 10.1016/j. proeng.2017.10.600.
2. Vereschaka A. А., Vereschaka А. S., Batako A. D. et al. (2017). Improvement of structure and quality of nanoscale multilayered composite coatings, deposited by filtered cathodic vacuum arc deposition method. Nanomaterials and Nanotechnology, (7). DOI: 10.1177/1847980416680805.
3. Vereschaka A. A., Mokritskii B. Ya., Sitnikov N. N. et al. (2017). Study of mechanism of failure and wear of multi-layered composite nano-structured coating based on system Ti–TiN–(ZrNbTi)N deposited on carbide substrates. Journal of Nano Research, 45, pp. 110-123.
4. Mokritskii B. Ya., Vereschaka A. A., Volosova M. A. et al. (2016). Development of wear-resistant coatings compounds for high-speed steel tool using a combined cathodic vacuum arc deposition. International Journal of Advanced Manufacturing Technology, 84(5 – 8), pp. 1471- 1482. DOI: 10.1007/s00170-015-7808-5 10.1007/s00170-015-7808-5 WOS:000376463300059.
5. Mokritskii B. Ya., Vereschaka A. A., Vereschaka A. S. et al. (2016). Development and research of nanostructured multilayer composite coatings for tungsten-free carbides with extended area of technological applications. International Journal of Advanced Manufacturing Technology, (4), pp. 1- 9. DOI: 10.1007/s00170-016-8739-5.
6. Chandrakanth Shet, Xiaomin Deng. (2000). Finite element analysis of the orthogonal metal cutting process. Journal of Materials Processing Technology, 105, pp. 95-109.
7. Komanduri Z., Hou B. (2001). Thermal modeling of the metal cutting process. P. III. Temperature rise distribution due to the combined effects of shear plane heat source and the tool-chip interface frictional heat source. International Journal & Manufacture, 43, pp. 89-107.
8. Grzesik W. (2006). Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique. International Journal of Machine Tools & Manufacture, 46, pp. 651-658.
9. Atlati S., Haddag B., Nouari M. Zenasni M. (2014). Thermomechanical modeling of the tool-work material interface in machining and it simplementation using the ABAQUS VUINTER subroutine. International Journal of Mechanical Sciences, 87, pp. 02-117.
10. Buchkremera S., Wub B., Lunga D. et al. (2014). FE-simulation of machining processes with a new material model. Journal of Materials Processing Technology, 214, pp. 599-611.
11. Parle Dattatraya, Singh Ramesh K., Joshi Suhas S., Ravikumar G. V. V. (2014). Modeling of microcrack formation in orthogonal machining. International Journal of Machine Tools & Manufacture, 80–81, pp. 18-29.
12. Haddag B., Nouari M. (2013). Tool wear and heat transfer analyses in dry machining based on multisteps numerical modeling and experimental validation. Wear, 302(1–2), pp. 1158-70.
13. Parle Dattatraya, Singh Ramesh K., Joshi Suhas S., Ravikumar G. V. V. (2014). Modeling of microcrack formation in orthogonal machining. International Journal of Machine Tools & Manufacture, 80–81, pp. 18-29.
14. Grzesik W., Nieslony P. (2003). A computational approach to evaluate temperature and heat partition in machining with multilayer coated tools. International Journal of Machine Tools & Manufacture, 43, pp. 1311-1317.
15. Grzesik W., Nieslony P. (2004). Physics based modeling of interface temperatures in machining with multiplayer coated tools at moderate cutting speeds. International Journal of Machine Tools & Manufacture, 44, pp. 889-901.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2018.10.pp.038-042

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2018.10.pp.038-042

and fill out the  form  

 

.

 
Поиск
На сайте?
Сейчас на сайте находятся:
 271 гостей на сайте
Опросы
Понравился Вам сайт журнала?
 
Rambler's Top100 Яндекс цитирования