Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Архив номеров
22 | 11 | 2024
2019, 09 сентябрь (September)

DOI: 10.14489/td.2019.09.pp.058-063

Лелюхин А. С., Муслимов Д. А., Пискарёва Т. И., Шехтман А. Г.
МЕТОДИКА ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ РЕНТГЕНОКОНТРАСТНЫХ ВКЛЮЧЕНИЙ ПО АБСОРБЦИОННЫМ КРИВЫМ
(pp. 58-63)

Аннотация. Рассмотрена методика определения эффективного атомного номера и поверхностной плотности рентгеноконтрастных включений по данным о поглощении рентгеновского излучения в веществе линейного многоканального детектора. Данные о поглощении излучения предложено рассматривать как координаты векторов в спектрозональном пространстве. Показано, что относительное изменение длины и угол расхождения векторов можно использовать в качестве критериев для калибровки спектрозональной системы регистрации.

Ключевые слова:  рентгеновское излучение, абсорбционные кривые, эффективный атомный номер, поверхностная плотность.

 

Lelyukhin A. S., Muslimov D. A., Piskaryova T. I., Shekhtman A. G.
METHODS FOR DETERMINING PARAMETERS OF RADIOPAQUE INCLUSIONS BY ABSORPTION CURVES
(pp. 58-63)

Abstract. The method for determining the effective atomic number and surface density of filters based on x-ray absorption data in a linear multichannel detector material is considered in this paper. Data on the absorption of radiation is proposed to consider as the coordinates of vectors in the spectrozonal space. It is shown that the relative change in length and the angle of divergence of the vectors can be used as criteria for the calibration of the spectrozonal recording system. Calibration characteristics are obtained for the mathematical model of the spectrozonal recording system. Calibration was performed for filters from materials with a priori given effective atomic numbers from 6 to 40 with a surface density of from 0.05 to 1.5 g/cm2. It has been established that in the calibration range, the deviations of the measured values of the parameters of the filters do not exceed 10 % by the effective atomic number and 30 % by the surface density. The proposed measurement method can be used to quantify the mineralization of the charge materials, in the separation of minerals, or to search for prohibited inclusions in covering environments. The efficiency of the technique can be achieved by optimizing the dimensionality of the spectrozonal space and choosing the conditions for the excitation of the primary radiation beam.

Keywords: X-rays, absorption curves, effective atomic number, surface density.

Рус

А. С. Лелюхин, Д. А. Муслимов, Т. И. Пискарёва (Оренбургский государственный университет, Оренбург, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
А. Г. Шехтман (Оренбургский государственный медицинский университет, Оренбург, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

A. S. Lelyukhin, D. A. Muslimov, T. I. Piskaryova (Orenburg State University, Orenburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. G. Shekhtman (Orenburg State Medical University, Orenburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Рус

1. Rebuffel V., Dinten J. M. Dual-energy X-ray imaging: benefits and limits // Insight-non-destructive testing and condition monitoring. 2007. V. 49. No. 10. P. 589 – 594.
2. Rühl R., Wozniak M. M., Werk M. et al. CsI-detector-based dual-exposure dual energy in chest radiography for lung nodule detection: results of an international multicenter trial // European radiology. 2008. V. 18. No. 9. P. 1831.
3. Taibi A., Fabbri S., Baldelli P. et al. Dual-energy imaging in full-field digital mammography: a phantom study // Physics in Medicine & Biology. 2003. V. 48. No. 13. P. 1945.
4. Ryzhikov V. D., Naydenov S. V., Grinyov B. V. et al. Multi-energy radiography on the basis of “scintillator–photodiode” detectors // Nuclear Instruments and Methods in Physics Research. Sec. A. Accelerators, Spectrometers, Detectors and Associated Equipment. 2003. V. 505. No. 1 – 2. P. 549 – 551.
5. Nittoh K., Sakurai T., Oyazu E. et al. Extension of dynamic range in X-ray radiography using multi-color scintillation detector // Nuclear Instruments and Methods in Physics Research Sec. A. Accelerators, Spectrometers, Detectors and Associated Equipment. 2003. V. 501. No. 2 – 3. Р. 615 – 622.
6. Рыжиков В. Д., Ополонин О. Д., Найденов С. В. и др. Исследования двухэнергетической линейки детекторов для рентгеновской остеоденситометрии // Медицинская техника. 2005. № 2. С. 18 – 21.
7. Blake G. M., Fogelman I. Technical principles of dual energy x-ray absorptiometry // Seminars in nuclear medicine. WB Saunders. 1997. V. 27. No. 3. P. 210 – 228.
8. Chun K. J. Bone densitometry // Seminars in Nuclear Medicine. WB Saunders. 2011. V. 41. No. 3. P. 220 – 228.
9. Лелюхин А. С. Определение качественных параметров рентгеновских пучков по абсорбционным кривым // Медицинская техника. 2017. № 3. С. 35 – 39.
10. Лелюхин А. С., Пискарева Т. И., Корнев Е. А. Неклассический рентгеновский спектрометр на основе линейного многоканального детектора // Прикладная физика. 2018. № 2. С. 90 – 96.
11. Лелюхин А. С., Муслимов Д. А., Таисов М. В., Аджиева М. Д. Комплекс программных модулей для восстановления спектра тормозного излучения методом минимизации направленного расхождения: Свидетельство о государственной регистрации программы для ЭВМ № 2014611219 от 28.01.2014 / Федеральная служба по интеллектуальной собственности. Россия. М., 2014.
12. Lelyukhin A. S., Kornev E. A., Kan’shin V. V. Spectrozonal X-ray detector for determining the effective atomic number of absorbing tissue // Biomedical Engineering. 2004. V. 38. No. 5. P. 227 – 232.

Eng

1. Rebuffel V., Dinten J. M. (2007). Dual-energy X-ray imaging: benefits and limits. Insight-non-destructive testing and condition monitoring, 49(10), pp. 589 – 594.
2. Rühl R., Wozniak M. M., Werk M. et al. (2008). CsI-detector-based dual-exposure dual energy in chest radiography for lung nodule detection: results of an international multicenter trial. European radiology, 18(9), pp. 1831.
3. Taibi A., Fabbri S., Baldelli P. et al. (2003). Dual-energy imaging in full-field digital mammography: a phantom study. Physics in Medicine & Biology, 48(13), p. 1945.
4. Ryzhikov V. D., Naydenov S. V., Grinyov B. V. et al. (2003). Multi-energy radiography on the basis of “scintillator–photodiode” detectors. Nuclear Instruments and Methods in Physics Research. Section A. Accelerators, Spectrometers, Detectors and Associated Equipment, 505(1 – 2), pp. 549 – 551.
5. Nittoh K., Sakurai T., Oyazu E. et al. (2003). Extension of dynamic range in X-ray radiography using multi-color scintillation detector. Nuclear Instruments and Methods in Physics Research Section A. Accelerators, Spectrometers, Detectors and Associated Equipment, 501(2 – 3), pp. 615 – 622.
6. Ryzhikov V. D., Opolonin O. D., Naydenov S. V. et al. (2005). Study of a dual-energy line of detectors for x-ray osteodensitometry. Meditsinskaya tekhnika, (2), pp. 18 – 21. [in Russian language]
7. Blake G. M., Fogelman I. (1997). Technical principles of dual energy x-ray absorptiometry. Seminars in nuclear medicine. WB Saunders, 27(3), pp. 210 – 228.
8. Chun K. J. (2011). Bone densitometry. Seminars in Nuclear Medicine. WB Saunders, 41(3), pp. 220 – 228.
9. Lelyuhin A. S. (2017). Determination of the quality parameters of X-ray beams from absorption curves. Meditsinskaya tekhnika, (3), pp. 35 – 39. [in Russian language]
10. Lelyuhin A. S., Piskareva T. I., Kornev E. A. (2018). Non-classical X-ray spectrometer based on a linear multichannel detector. Prikladnaya fizika, (2), pp. 90 – 96. [in Russian language]
11. Lelyuhin A. S., Muslimov D. A., Taisov M. V., Adzhieva M. D. (2014). A set of software modules for restoring the bremsstrahlung spectrum by minimizing directional discrepancy. Certificate on state registration of a computer program No. 2014611219. Federal Service for Intellectual Property. Moscow. [in Russian language]
12. Lelyukhin A. S., Kornev E. A., Kan’shin V. V. (2004). Spectrozonal X-ray detector for determining the effective atomic number of absorbing tissue. Biomedical Engineering, 38(5), pp. 227 – 232.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2019.09.pp.058-063

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2019.09.pp.058-063

and fill out the  form  

 

.

 

 
Поиск
На сайте?
Сейчас на сайте находятся:
 252 гостей на сайте
Опросы
Понравился Вам сайт журнала?
 
Rambler's Top100 Яндекс цитирования