Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Архив номеров
24 | 11 | 2024
2019, 11 ноябрь (November)

DOI: 10.14489/td.2019.11.pp.004-013

Степанова Л. Н., Батаев В. А., Чернова В. В.
ОПРЕДЕЛЕНИЕ СВЯЗИ СТРУКТУРЫ ОБРАЗЦОВ ИЗ УГЛЕПЛАСТИКА С ПАРАМЕТРАМИ СИГНАЛОВ АКУСТИЧЕСКОЙ ЭМИССИИ ПРИ ОДНОВРЕМЕННОМ СТАТИЧЕСКОМ И ТЕПЛОВОМ НАГРУЖЕНИИ
(c. 4-13)

Аннотация. Исследованы влияния положительных (+20….+100 °C) и отрицательных (–20…–80 °C) температур и статической нагрузки на информативные параметры (структурный коэффициент, парциальную энергию, локацию) сигналов акустической эмиссии (АЭ). Проведены испытания образцов из углепластика Т 800, выполненных из девяти монослоев с укладкой [±45/90/О3/90/±45], размером 600x100x0,9 мм с концентратором напряжений в виде отверстия диаметром 12 мм. С использованием фрактографии анализировалась связь изменения структуры углепластика с информативными параметрами сигналов АЭ. Расслоению углепластика при одновременном воздействии статической нагрузки и температуры от – 80 до –20 °С и от +60 до +100 °С соответствовало увеличение структурного коэффициента и парциальной энергии, что вызывало смещение энергии сигналов АЭ в диапазон частот 125…250 кГц. При тех же статических нагрузках, но температурах +20 и +40 °С информативные параметры принимали минимальное значение, что означало смещение энергии в диапазон частот 250…500 кГц, наблюдалось выкрашивание матрицы и разрыв волокон без расслоения углепластика. Обнаружение нарушения структуры углепластика по информативным параметрам сигналов АЭ уменьшает риск появления аварийных ситуаций в процессе эксплуатации композиционных конструкций.

Ключевые слова:  углепластик, отрицательные и положительные температуры, акустическая эмиссия, образец, фрактография, повреждение, матрица, волокно.

 

Stepanova L. N., Bataev V. A., Chernova V. V.
DETERMINATION OF THE CONNECTION BETWEEN THE STRUCTURE OF CARBON FIBER SAMPLES AND THE PARAMETERS OF ACOUSTIC EMISSION SIGNALS DURING SIMULTANEOUS STATIC AND THERMAL LOADING
(pp. 4-13)

Abstract. The effects of positive and negative temperature and static load on the main informative parameters (structure coefficient, partial energy, location) of acoustic emission (AE) signals, which determined the mechanism for changing the structure of carbon fiber and the beginning of its destruction, are investigated. Tests of specimens of carbon fiber T800, made of nine monolayers with laying [±45/90/О3/90/±45], size 600x100x0.9 mm. Each sample was subjected to static loading and the effects of positive (+20, +40, +60, +80, +100 °С) or negative (–20, –40, –60, –80 °C) temperatures in the area of the concentrator in the form of a 12 mm diameter hole. Using fractography, changes in the structure of carbon plastic from the applied static load and temperature and changes informative parameters were analyzed. It was shown that the lamination of the material with simultaneous exposure to static load and temperatures from –80 to –20 °C and from +60 to +100 °C corresponded to an increase in the structural coefficient and partial energy, which caused an energy shift in the frequency range 125…250 kHz. Under the same static loads, but temperatures of +20 and +40 °C, informative parameters took on minimal values, that meant the energy was shifted to the frequency range 250…500 kHz, characterized the crumbling of the matrix and breaking of the fibers without lamination of the CFRP. Under all temperature conditions, the location of the signals began in the hole area and spread in the direction of the static load. The detection the disturbance of the CFRP structure by the informative parameters of AE signals makes it possible to reduce the risk of emergency situations during working of the composite construction.

Keywords: carbon fiber, negative and positive temperatures, acoustic emission, sample, fractography, damage, matrix, fiber.

Рус

Л. Н. Степанова (ФГУП «Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина», Новосибирск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
В. А. Батаев (Новосибирский государственный технический университет, Новосибирск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
В. В. Чернова (Сибирский государственный университет путей сообщений, Новосибирск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

L. N. Stepanova (Federal State Unitary Enterprise “Siberian Aeronautical Research Institute named after S. A. Chaplygin”, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. A. Bataev (The Novosibirsk State Technical University (NSTU), Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. V. Chernova (The Siberian Transport University (STU), Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Рус

1. Madaras E. Highlights of NASA’s role in developing state-of-the-art nondestructive evaluation for composites: NASA Document ID 20050050900 // Presented at the American Helicopter Sosiety Hampton Roads Chapter Structure Specialist Meeting. Williamsburg, VA, 30 Oct. – 1 Nov. 2001.
2. Барсук В. Е., Степанова Л. Н., Кабанов С. И. Акустико-эмиссионный контроль дефектов при статических испытаниях конструкции композиционного самолета // Контроль. Диагностика. 2018. № 4. С. 14 – 19.
3. Барсук В. Е., Серьезнов А. Н., Степанова Л. Н. и др. Акустико-эмиссионный контроль дефектов кессона крыла самолета из углепластика в процессе статического и ударного нагружения // Полет. 2019. № 5. С. 17 – 24.
4. Markus G. R. Sause. Acoustic emission signal propagation in damaged composite structures // Journal of Acoustic Emission. 2013. V. 31. P. 1 – 18.
5. Aljets D. Acoustic emission source location in composite aircraft structures using modal analysis // University of Glamorgan. 2011. PhD Thesis. 163 p.
6. Cardoni M., Giglio M. A low frequency lamb-waves based structural health monitoring of an aeronautical carbon fiber reinforced polymer composite // Journal of Acoustic Emission. 2014. V. 32. P. 1 – 20.
7. Prosser W., Madaras E., Studor G. Acoustic emission detection of impact damage on space shuttle structures // Journal of Acoustic Emission. 2005. V. 23. P. 37 – 46.
8. Николаев В. П., Мышенкова Е. В., Пичугин В. С. и др. Влияние температуры на механические свойства композиционных материалов // Заводская лаборатория. Диагностика материалов. 2013. № 4. С. 58 – 61.
9. Нихамкин М. А., Конев И. П., Саженков Н. А. и др. Тепловое состояние образцов из углепластика при усталостных испытаниях // Фундаментальные исследования. 2015. № 9. С. 44 – 49.
10. Степанова Л. Н., Чернова В. В., Петрова Е. С. и др. Акустико-эмиссионный контроль процесса разрушения образцов из углепластика при воздействии статических и тепловых нагрузок // Дефектоскопия. 2018. № 11. С. 9 – 16.
11. Постнова М. В., Постнов В. И. Влияние температуры испытаний на усталостные свойства композиционных материалов на углеродной матрице // Известия Самарского научного центра Российской академии наук. 2014. Т. 16. № 6 (2). С. 568 – 571.
12. Кириллов В. Н., Старцев О. В., Ефимов В. А. Климатическая стойкость и повреждаемость полимерных композиционных материалов, проблемы и пути их решения // Авиационные материалы и технологии. 2012. № 5. С. 412 – 423.
13. Матвиенко Ю. Г., Васильев И. Е., Чернов Д. В. и др. Критериальные параметры для оценки степени деградации композитных материалов при акустико-эмиссионном мониторинге изделий // Дефектоскопия. 2018. № 12. С. 3 – 11.
14. Матвиенко Ю. Г., Васильев И. Е., Иванов В. И. и др. Акустико-эмиссионная диагностика процесса разрушения структуры композита при растягивающих, сжимающих и циклических нагрузках // Дефектоскопия. 2016. № 8. С. 30 – 46.
15. Пат. 2 676 209 МПК G 01 N 29/14. Акустико-эмиссионный способ определения типа дефекта структуры образца из углепластика / Л. Н. Степанова, В. А. Батаев, Н. А. Лапердина, В. В. Чернова; опубл. 26.12.2018 // Бюл. 2018. № 36.
16. Степанова Л. Н., Рамазанов И. С., Батаев В. А. и др. Анализ зависимости параметров сигналов акустической эмиссии от изменения структуры углепластика при прочностных испытаниях образцов // Конструкции из композиционных материалов. 2019. № 2. С. 58 – 65.
17. Батаев В. А., Степанова Л. Н., Лапердина Н. А. и др. Акустико-эмиссионный контроль ранней стадии развития дефектов при статическом нагружении образцов из углепластика // Контроль. Диагностика. 2018. № 8. С. 14 – 20.
18. Серьезнов А. Н., Степанова Л. Н., Кабанов С. И. Диагностический модуль распределенной акустико-эмиссионной системы // Датчики и системы. 2016. № 5. С. 37 – 43.
19. Степанова Л. Н., Чернова В. В. Акустико-эмиссионный контроль процесса разрушения образцов из углепластика при воздействии статической нагрузки, положительных и отрицательных температур // Контроль. Диагностика. 2019. № 6. С. 34 – 41.
20. Степанова Л. Н., Чернова В. В., Рамазанов И. С. Использование методов кластеризации для обработки акустико-эмиссионной информации // Контроль. Диагностика. 2019. № 8. С. 12 – 21.

Eng

1. Madaras E. (2001). Highlights of NASA’s role in developing state-of-the-art nondestructive evaluation for composites: NASA Document ID 20050050900. Presented at the American Helicopter Sosiety Hampton Roads Chapter Structure Specialist Meeting. Williamsburg.
2. Barsuk V. E., Stepanova L. N., Kabanov S. I. (2018). Acoustic emission testing of defects during static tests of composite aircraft design. Kontrol'. Diagnostika, (4), pp. 14 – 19. [in Russian language] DOI: 10.14489/td.2018.04.pp.014-019
3. Barsuk V. E., Ser'eznov A. N., Stepanova L. N. et al. (2019). Acoustic emission testing of defects of a wing box of an airplane made of carbon fiber during static and impact loading. Polet, (5), pp. 17 – 24. [in Russian language]
4. Markus G. R. (2013). Sause. Acoustic emission signal propagation in damaged composite structures. Journal of Acoustic Emission, Vol. 31, pp. 1 – 18.
5. Aljets D. (2011). Acoustic emission source location in composite aircraft structures using modal analysis. University of Glamorgan. PhD Thesis.
6. Cardoni M., Giglio M. (2014). A low frequency lambwaves based structural health monitoring of an aeronautical carbon fiber reinforced polymer composite. Journal of Acoustic Emission, Vol. 32, pp. 1 – 20.
7. Prosser W., Madaras E., Studor G. (2005). Acoustic emission detection of impact damage on space shuttle structures. Journal of Acoustic Emission, Vol. 23, pp. 37 – 46.
8. Nikolaev V. P., Myshenkova E. V., Pichugin V. S. et al. (2013). The effect of temperature on the mechanical properties of composite materials. Zavodskaya laboratoriya. Diagnostika materialov, (4), pp. 58 – 61. [in Russian language]
9. Nihamkin M. A., Konev I. P., Sazhenkov N. A.et al. (2015). Thermal state of carbon fiber specimens during fatigue tests. Fundamental'nye issledovaniya, (9), pp. 44 – 49. [in Russian language]
10. Stepanova L. N., Chernova V. V., Petrova E. S. et al. (2018). Acoustic emission testing of the process of destruction of carbon fiber samples under the influence of static and thermal loads. Defektoskopiya, (11), pp. 9 – 16. [in Russian language]
11. Postnova M. V., Postnov V. I. (2014). The effect of test temperature on the fatigue properties of carbon matrix composite materials. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, Vol. 16, 6(2), pp. 568 – 571. [in Russian language]
12. Kirillov V. N., Startsev O. V., Efimov V. A. (2012). Climatic resistance and damage to polymer composite materials, problems and solutions. Aviatsionnye materialy i tekhnologii, (5), pp. 412 – 423. [in Russian language]
13. Matvienko Yu. G., Vasil'ev I. E., Chernov D. V. et al. (2018). Criteria for assessing the degree of degradation of composite materials during acoustic emission monitoring of products. Defektoskopiya, (12), pp. 3 – 11. [in Russian language]
14. Matvienko Yu. G., Vasil'ev I. E., Ivanov V. I. et al. (2016). Acoustic emission diagnostics of the process of destruction of the composite structure under tensile, compressive and cyclic loads. Defektoskopiya, (8), pp. 30 – 46. [in Russian language]
15. Stepanova L. N., Bataev V. A., Laperdina N. A., Chernova V. V. (2018). Acoustic emission method for determining the type of structural defect of a carbon fiber sample. Patent No. 2 676 209. [in Russian language]
16. Stepanova L. N., Ramazanov I. S., Bataev V. A. et al. (2019). Analysis of the dependence of the parameters of acoustic emission signals on changes in the structure of carbon fiber during strength tests of samples. Konstruktsii iz kompozitsionnyh materialov, (2), pp. 58 – 65. [in Russian language]
17. Bataev V. A., Stepanova L. N., Laperdina N. A. et al. (2018). Acoustic emission control of the early stage of the development of defects under static loading of carbon fiber samples. Kontrol'. Diagnostika, (8), pp. 14 – 20. [in Russian language] DOI: 10.14489/td.2018.08.pp.014-020
18. Ser'eznov A. N., Stepanova L. N., Kabanov S. I. (2016). Diagnostic module of distributed acoustic emission system. Datchiki i sistemy, (5), pp. 37 – 43. [in Russian language]
19. Stepanova L. N., Chernova V. V. (2019). Acoustic emission control of the process of destruction of carbon fiber samples under the influence of static load, positive and negative temperatures. Kontrol'. Diagnostika, (6), pp. 34 – 41. DOI: 10.14489/td.2019.06.pp.034-041
20. Stepanova L. N., Chernova V. V., Ramazanov I. S. (2019). The use of clustering methods for processing acoustic emission information. Kontrol'. Diagnostika, (8), pp. 12 – 21. [in Russian language] DOI: 10.14489/td.2019.08.pp.012-021

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2019.11.pp.004-013

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2019.11.pp.004-013

and fill out the  form  

 

.

 

 
Поиск
На сайте?
Сейчас на сайте находятся:
 87 гостей на сайте
Опросы
Понравился Вам сайт журнала?
 
Rambler's Top100 Яндекс цитирования