DOI: 10.14489/td.2020.07.pp.054-064
Федотов М. Ю., Будадин О. Н., Козельская С. О., Овчинников И. Г., Шелемба И. С. МОНИТОРИНГ ВОЛОКОННО-ОПТИЧЕСКИМИ ДАТЧИКАМИ НАДЕЖНОСТИ ЭКСПЛУАТАЦИИ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ С ВНЕШНИМ КОМПОЗИТНЫМ АРМИРОВАНИЕМ (c. 54-64)
Аннотация. Приведен обзор фактического состояния строительных сооружений на примере конструкций железобетонных и металлических мостов. Представлены результаты исследований, посвященных волоконно-оптическому мониторингу и усилению пролетных строений мостов композитными материалами на основе отечественных и зарубежных углеродных армирующих наполнителей и эпоксидных полимерных матриц. Экспериментально показано, что для железобетонных конструкций целесообразно применять композитные системы усиления с использованием средств внешнего армирования, устанавливаемых непосредственно на поврежденный объект методом контактного формования. Для металлических конструкций такой поход не применим вследствие существенного различия коэффициентов линейного температурного расширения композитов и металлов. В этом случае может быть использована система усиления на основе готовых композитных шпренгельных систем, изготавливаемых методами автоклавного и безавтоклавного формования. Полученные результаты также свидетельствуют о целесообразности совместного использования систем мониторинга и усиления поврежденных конструкций мостов композитами.
Ключевые слова: неразрушающий контроль, полимерный композиционный материал, строительная конструкция, мост, пролетное строение, усиление, волоконно-оптический мониторинг.
Fedotov M. Yu., Budadin O. N., Kozelskaya S. O., Ovchinnikov I. G., Shelemba I. S. MONITORING BY FIBER OPTICAL SENSORS OF RELIABILITY OF OPERATION OF BUILDING STRUCTURES WITH EXTERNAL COMPOSITE REINFORCEMENT (pp. 54-64)
Abstract. This article describes of the actual state of building structures by the example of structures of reinforced concrete and metal bridges. It is shown that a high degree of wear of artificial structures leads to the need for a reliable assessment of their actual condition using modern methods and means of non-destructive testing and diagnostics, as well as strengthening exploited structures with polymer composite materials. The results of researches on fiber-optic monitoring and strengthening of bridge spans with composite materials based on domestic and foreign carbon reinforcing fillers and epoxy polymer matrices are presented. It has been experimentally shown that for reinforced concrete structures it is advisable to use composite strengthening systems using external reinforcement installed directly on the damaged object by contact molding. For metal structures, this approach is not applicable due to a significant difference in the coefficients of linear thermal expansion of composites and metals. In this case, an amplification system based on prefabricated composite truss systems made by autoclave and unautoclave molding can be applied. The obtained research results also indicate the advisability of joint use of monitoring systems and strengthening of damaged bridge structures by composites.
Keywords: non-destructive testing, polymer composite material, building structure, bridge, span, reinforcement, fiber-optic monitoring.
М. Ю. Федотов (Ассоциация строителей России, Москва, Россия; Российская инженерная академия, Москва, Россия) Е-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
О. Н. Будадин (Российская инженерная академия, Москва, Россия; АО «ЦНИИСМ», Хотьково, Московская обл., Россия) Е-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
С. О. Козельская (АО «ЦНИИСМ», Хотьково, Московская обл., Россия) Е-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
И. Г. Овчинников (Тюменский индустриальный университет, Тюмень, Россия) Е-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
И. С. Шелемба (ООО «Инверсия-Сенсор», Пермь, Россия) Е-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
M. Yu. Fedotov (Russian Builders Association; Russian Engineering Academy, Moscow, Russia) Е-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
O. N. Budadin (Central Research Institute for Special Machinery JSC, Khotkovo, Russia) Е-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
S. O. Kozel’skaya (Central Research Institute for Special Machinery JSC, Khotkovo Russia,) Е-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
I. G. Ovchinnikov (Industrial University of Tyumen, Tyumen, Russia) Е-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
I. S. Shelemba (Inversiya-Sensor LLC, Perm, Russia) Е-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Износ Колмовского моста составляет более 60 % [Электронный ресурс.]: Электрон. текстовые, граф. дан. в формате *.html. URL: https://news.novgorod.ru/news/iznos-kolmovskogo-mosta-sostavlyaet-bolee-60--149863.html (дата обращения: 14.02.2020 г.). 2. РЖД жалуется, что мосты в ее хозяйстве находятся в царском состоянии [Электронный ресурс.]: Электрон. текстовые, граф. дан. в формате *.html. URL: https://www.vedo mosti.ru/business/articles/2011/07/25/stoletnie_mosty (дата обращения: 14.02.2020 г.). 3. Бокарев С. А., Прибытков С. С., Яшнов А. Н. Содержание искусственных сооружений с использованием информационных технологий: учеб. пособие для студентов вузов железнодор. трансп. М.: Учеб.-метод. центр по образованию на ж.-д. трансп., 2008. 193 с. 4. Дементьев В. А., Волокитин В. П., Анисимова Н. А. Усиление и реконструкция мостов на автомобильных дорогах: учеб. пособие / под общ. ред. проф. В. А. Дементьева; Воронеж. гос. арх.-строит. ун-т. Воронеж, 2006. 116 с. 5. Смердов М. Н. Исследование несущей способности железобетонных конструкций горнотехнических зданий и сооружений, усиленных композиционными материалами, с учетом температурных факторов: автореф. дис. ... канд. техн. наук: 25.00.22. Екатеринбург, 2016. 16 с. 6. Овчинников И. И., Овчинников И. Г., Чесноков Г. В., Покулаев К. В. Усиление металлических конструкций фиброармированными пластиками. Часть 1. Состояние проблемы // Науковедение. 2014. № 3. 27 с. URL: https://naukovedenie.ru/PDF/19TVN314.pdf (дата обращения: 14.02.2020 г.). 7. Овчинников И. И., Овчинников И. Г., Чесноков Г. В., Покулаев К. В. Усиление металлических конструкций фиброармированными пластиками. Часть 2. Применение метода предельных состояний к расчету растягиваемых и изгибаемых конструкций // Науковедение. 2014. № 3. 23 с. URL: https://naukovedenie.ru/PDF/20TVN314.pdf (дата обращения: 14.02.2020 г.). 8. ГОСТ Р 22.1.12–2005. Структурированная система мониторинга и управления инженерными системами здания и сооружений. Общие требования [Электронный ресурс.]: Электрон. текстовые, граф. дан. в формате *.html. URL: http://docs.cntd.ru/document/1200039543 (дата обращения: 14.02.2020 г.). 9. Болдырев Г. Г., Валеев Д. Н., Живаев А. А., Нестеров П. В. Системы мониторинга строительных конструкций зданий и сооружений [Электронный ресурс.]: Электрон. текстовые, граф. дан. в формате *.html. URL: http://npp-geotek.com/f/sistemamonitoringakonstruktsiy.pdf (дата обращения: 14.02.2020 г.). 10. Miller T. C., Chajes M. J., Mertz D. R., Hastings J. N. Strengthening of a Steel Bridge Girder using CFRP Plates // Journal of Bridge Engineering. 2001. V. 6. No. 6. P. 514 – 522. 11. Peiris A., Harik I. E. Field Testing of Steel Bridge Girders Strengthened Using Ultra High Modulus (UHM) Carbon Fiber Reinforced Polymer (CFRP) Laminates // Conference Proceedings: The 6th International Conference on FRP Composites in Civil Engineering. Rome, 13 – 15 June 2012. Rome, 2012. 8 р. 12. Шишкин В. В., Гранев И. В., Шелемба И. С. Отечественный опыт производства и применения волоконно-оптических датчиков // Прикладная фотоника. 2016. Т. 3. № 1. С. 61 – 75. 13. Кузнецов А. С., Дубок В. В., Макушин А. Л. и др. Применение точечных волоконно-оптических датчиков на гидротехнических сооружениях строящейся Зарамагской ГЭС-1 // Известия Всероссийского научно-исследовательского института гидротехники им. Б. Е. Веденеева. 2014. Т. 273. С. 36 – 44. 14. Шелемба И. С. Методы опроса распределенных волоконно-оптических измерительных систем и их практическое применение: дис. ... канд. техн. наук: 01.04.05. Новосибирск, 2018. 135 с. 15. Пат. 2018122657 РФ. E 01 D 22/00, E 04 G 23/00, E 04 G 23/02. Устройство повышения несущей способности металлических конструкций инженерных сооружений / М. Л. Лоскутов; заявка 2018122657; заявл. 21.06.2018 г.; опубл. 23.12.2019 г. // Бюл. 2019. № 36. 10 с. 16. Федотов М. Ю., Лоскутов М. Л., Шелемба И. С. и др. К вопросу мониторинга несущих металлических конструкций мостов с использованием волоконно-оптических датчиков // Транспортные сооружения. 2018. Т. 5. № 3. С. 10 – 21. 17. Овчинников И. Г., Валиев Ш. Н., Овчинников И. И. и др. Вопросы усиления железобетонных конструкций композитами. Ч. 2. Натурные исследования усиления железобетонных конструкций композитами, возникающие проблемы и пути их решения // Науковедение. 2012. № 4. С. 90 – 126. URL: https://naukovedenie.ru/PDF/8tvn412.pdf (дата обращения: 14.02.2020 г.). 18. Федотов М. Ю., Кошман Н. П., Гусев Б. В. и др. Опыт применения композитных систем внешнего армирования и оптического мониторинга строительных сооружений // Транспортные сооружения. 2019. Т. 6. № 4. 20 с.
1. Depreciation of the Kolmovsky bridge is more than 60%. Available at: https://news.novgorod.ru/news/iznos-kolmovskogo-mosta-sostavlyaet-bolee-60--149863.html (Accessed: 14.02.2020). [in Russian language] 2. Russian Railways complains that bridges in its economy are in royal condition. Available at: https://www.vedomosti.ru/business/articles/2011/07/25/stoletnie_mosty (Accessed: 14.02.2020). [in Russian language] 3. Bokarev S. A., Pribytkov S. S., Yashnov A. N. (2008). Maintenance of artificial structures using information technology: a training manual for university students of railway transport. Moscow: Uchebno-metodicheskiy tsentr po obrazovaniyu na zheleznodorozhnom transporte. [in Russian language] 4. Dement'ev V. A. (Ed.), Volokitin V. P., Anisimova N. A. (2006). Strengthening and reconstruction of bridges on roads: a training manual. Voronezh: gosudarstvenniy arhitekturno-stroitel'niy universitet. [in Russian language] 5. Smerdov M. N. (2016). Study of the bearing capacity of reinforced concrete structures of mining structures and structures, reinforced composite materials, taking into account temperature factors. Ekaterinburg. [in Russian language] 6. Ovchinnikov I. I., Ovchinnikov I. G., Chesnokov G. V., Pokulaev K. V. (2014). Reinforcement of metal structures with fiber reinforced plastics. Part 1. Status of the problem. Naukovedenie, (3). Available at: https://naukovedenie.ru/PDF/19TVN314.pdf (Accessed: 14.02.2020). [in Russian language] 7. Ovchinnikov I. I., Ovchinnikov I. G., Chesnokov G. V., Pokulaev K. V. (2014). Reinforcement of metal structures with fiber reinforced plastics. Part 2. Application of the limit state method to the calculation of tensile and flexible structures. Naukovedenie, (3). Available at: https://naukovedenie.ru/PDF/20TVN314.pdf (Accessed: 14.02.2020). [in Russian language] 8. ГОСТ Р 22.1.12–2005. Structured monitoring and control system for engineering systems of buildings and structures. General requirements. Ru Standard No. GOST R 22.1.12–2005. Available at: http://docs.cntd.ru/document/1200039543 (Accessed: 14.02.2020). 9. Boldyrev G. G., Valeev D. N., Zhivaev A. A., Nesterov P. V. Monitoring systems for building structures of buildings and structures. Available at: http://npp-geotek.com/f/sistemamonitoringakonstruktsiy.pdf (Accessed: 14.02.2020). [in Russian language] 10. Miller T. C., Chajes M. J., Mertz D. R., Hastings J. N. (2001). Strengthening of a Steel Bridge Girder using CFRP Plates. Journal of Bridge Engineering, Vol. 6, (6), pp. 514 – 522. 11. Peiris A., Harik I. E. (2012). Field Testing of Steel Bridge Girders Strengthened Using Ultra High Modulus (UHM) Carbon Fiber Reinforced Polymer (CFRP) Laminates. Conference Proceedings: The 6th International Conference on FRP Composites in Civil Engineering. Rome. 12. Shishkin V. V., Granev I. V., Shelemba I. S. (2016). Domestic experience in the production and use of fiber optic sensors. Prikladnaya fotonika, Vol. 3, (1), pp. 61 – 75. [in Russian language] 13. Kuznetsov A. S., Dubok V. V., Makushin A. L. et al. (2014). The use of point fiber-optic sensors in hydraulic structures of the Zaramagskaya HPP-1 under construction. Izvestiya Vserossiyskogo nauchno-issledovatel'skogo instituta gidrotekhniki im. B. E. Vedeneeva, Vol. 273, pp. 36 – 44. [in Russian language] 14. Shelemba I. S. (2018). Interview methods for distributed fiber-optic measuring systems and their practical application. Novosibirsk. [in Russian language] 15. Loskutov M. L. (2019). Device for increasing the bearing capacity of metal structures of engineering structures. Ru Patent No. 2018122657. Russian Federation. [in Russian language] 16. Fedotov M. Yu., Loskutov M. L., Shelemba I. S. et al. (2018). On the issue of monitoring load-bearing metal bridge structures using fiber optic sensors. Transportnye sooruzheniya, Vol. 5, (3), pp. 10 – 21. [in Russian language] 17. Ovchinnikov I. G., Valiev SH. N., Ovchinnikov I. I. et al. (2012). Reinforcement of reinforced concrete structures with composites. Part 2. Field studies of reinforcement of reinforced concrete structures with composites, emerging problems and solutions. Naukovedenie, (4), pp. 90 – 126. Available at: https://naukovedenie.ru/PDF/8tvn412.pdf (Accessed: 14.02.2020). [in Russian language] 18. Fedotov M. Yu., Koshman N. P., Gusev B. V. et al. (2019). The experience of using composite systems of external reinforcement and optical monitoring of building structures. Transportnye sooruzheniya, Vol. 6, (4). [in Russian language]
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа скопируйте doi статьи:
10.14489/td.2020.07.pp.054-064
и заполните форму
Отправляя форму вы даете согласие на обработку персональных данных.
.
This article is available in electronic format (PDF).
The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2020.07.pp.054-064
and fill out the form
.
|