Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Архив номеров
22 | 12 | 2024
2020, 08 август (August)

DOI: 10.14489/td.2020.08.pp.056-064

Данилов М. И.
К ПРОБЛЕМЕ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЛИНИЙ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЕЙ ПО ДАННЫМ АИИС КУЭ
(c. 56-64)

Аннотация. Рассматривается проблема организации мониторинга и диагностики технического состояния четырехпроводной распределительной электрической сети (РЭС) средствами автоматизированной информационно-измерительной системы контроля и учета электроэнергии (АИИС КУЭ), потребляемой абонентами. Предложена методика оперативной идентификации сопротивлений межабонентских участков РЭС, использующая данные режимов работы распределительной сети, реализация которой в АИИС КУЭ позволяет вести контроль за изменениями значений их активных сопротивлений. Представлена процедура диагностики линий в РЭС, заключающаяся в анализе динамики изменений значений активных сопротивлений, полученных в разные моменты времени, и выявления увеличения уровня износа отдельных проводов на фоне действия протекающих токов и климатических факторов. При этом считается, что внешние воздействия приводят к одинаковым относительным изменениям параметров всех проводов для одного и того же межабонентского участка. Критерием диагностики износа является увеличение значений активных сопротивлений для отдельных проводов при их неодинаковом изменении относительно базовых значений, которые определяются в ходе наблюдений за состоянием распределительной сети.

Ключевые слова:  четырехпроводная распределительная сеть, идентификация параметров, диагностика линий.

 

Danilov M. I.
TO THE PROBLEM OF DIAGNOSTICS OF THE TECHNICAL STATE OF THE DISTRIBUTION NETWORKS LINES ACCORDING TO AIMS EMA DATA
(pp. 56-64)

Abstract. The problem of organization of monitoring and diagnosing of the technical state of a four-wire distribution electric network (DEN) by means of an automated information-measuring system of monitoring and accounting of electricity (AIMS EMA) consumed by subscribers is considered. As parameters characterizing the technical state of the DEN, the values of the active resistances of the lines (wires) in the network are taken. The indicated parameters can change significantly over time depending on the values of flowing currents, climatic factors of the external environment, as well as due to wear out of the wires. A technique of the operational identification of resistances of inter-subscriber DEN sections, which uses the data of the distribution network operating modes is proposed. Its implementation in AIMS EMA allows to monitor changes in values of their active resistances. A procedure of diagnosing lines in DEN is presented, it consists in analyzing the dynamics of active resistances values changes obtained at different points in time, and identifying the increase of the wear level of individual wires against the background of flowing currents and climatic factors. It is believed, that external influences lead to the same relative changes of parameters of all wires for the same interpersonal site. The wear diagnostic criterion is an increase of the active resistance values for individual wires with their unequal change relatively to the baseline values, which are determined during observations of the distribution network condition.

Keywords: four-wire distribution network, parameter identification, line diagnostics.

Рус

М. И. Данилов (Северо-Кавказский федеральный университет, инженерный институт, Ставрополь, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

M. I. Danilov (Engineering Institute of North Caucasus Federal University, Stavropol, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Рус

1. Зеленский Е. Г., Кононов Ю. Г., Левченко И. И. Идентификация параметров распределительных сетей по синхронизированным измерениям токов и напряжений // Электротехника. 2016. № 7. С. 3 – 8.
2. Оморов Т. Т., Такырбашев Б. К. Идентификация состояния распределительной электрической сети в системах автоматизации учета и управления энергопотреблением // Мехатроника, автоматизация, управление. 2016. № 10. С. 651 – 656.
3. Khandeparkar K. V., Soman S. A., Gajjar G. Detection and Correction of Systematic Errors in Instrument Transformers Along with Line Parameter Estimation Using PMU Data // IEEE Transactions on Power Systems. 2017. V. 32. P. 3089 – 3098. DOI: 10.1109/TPWRS.2016.2620990
4. Ritzmann D., Rens J., Wright P. S. et al. A Novel Approach to Noninvasive Measurement of Overhead Line Impedance Parameters // IEEE Transactions on Instrumentation and Measurement. 2017. V. 66. P. 1155 – 1163. DOI: 10.1109/TIM.2017.2665958
5. Оморов Т. Т., Такырбашев Б. К., Осмонова Р. Ч. Определение параметров распределительных сетей 0,4 кВ по данным АСКУЭ // Энергетик. 2017. № 6. C. 37 – 40.
6. Оморов Т. Т., Осмонова Р. Ч., Такырбашев Б. К. Диагностика состояний электрических линий распределительных сетей в составе АСКУЭ // Контроль. Диагностика. 2017. № 5. С. 44 – 48.
7. Кононов Ю. Г., Рыбасова О. С., Михайленко В. С. Уточнение параметров участков линий сети среднего напряжения по данным синхронных измерений // Изв. вузов. Электромеханика. 2018. № 1. С. 77 – 84. DOI: 10.17213/0136-3360-2018-1-77-84
8. Оморов Т. Т., Осмонова Р. Ч., Койбагаров Т. Ж. Параметрическая идентификация распределительной сети в составе АСКУЭ // Вестник ЮУрГУ. Сер. Энергетика. 2018. № 1. С. 46 – 52. DOI: 10.14529/power180106
9. Данилов М. И., Романенко И. Г. Метод выявления мест неконтролируемого потребления электроэнергии в электрических сетях 0,4 кВ // Изв. вузов. Электромеханика. 2019. № 4. С. 90 – 96.
10. Данилов М. И., Романенко И. Г. К проблеме определения векторов тока и напряжения в распределительной сети по данным АИИС КУЭ // Вестник Южно-Уральского государственного университета. Сер. Энергетика. 2019. № 4. С. 87 – 94.
11. Pegoraro P. A., Brady K., Castello P. et al. Compensation of Systematic Measurement Errors in a PMU-Based Monitoring System for Electric Distribution Grids // IEEE Transactions on Instrumentation and Measurement. 2019. V. 68. P. 3871 – 3882. DOI: 10.1109/TIM.2019.2908703
12. Данилов М. И., Романенко И. Г. Метод расчета векторов тока и напряжения в распределительных сетях с автоматизированными информационно-измерительными системами контроля и учета электроэнергии // Энергетик. 2020. № 6. С. 31 – 34.
13. Ларина Э. Т. Силовые кабели и кабельные линии: учеб. пособие для вузов. М.: Энергоатомиздат, 1984. 368 с.
14. Короткие замыкания и выбор электрооборудования: учеб. пособие для вузов / И. П. Крючков, В. А. Старшинов, Ю. П. Гусев и др.; под ред. И. П. Крючкова, В. А. Старшинова. М.: ИД МЭИ, 2012. 568 с.
15. ГОСТ 28249–93. Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ. URL: http://docs.cntd.ru/document/gost-28249-93 (дата обращения: 09.03.2020)
16. РД 153-34.0-20.363–99. Методика инфракрасного контроля электрооборудования и ВЛ. URL: http://www.thermoview.ru/pdf/rd.pdf (дата обращения: 09.03.2020)
17. Правила устройства электроустановок. Раздел 1.7 – Утв. Приказом Минэнерго России от 08.07.2002 № 204. 7-е изд. URL: http://docs.cntd.ru/document/1200030218 (дата обращения: 09.03.2020)
18. Провода установочные. URL: http://kabelmag 2012.narod.ru/Kab_ustanovS.html (дата обращения: 09.03.2020).
19. Каменский М., Холодный С. Силовые кабели 1 – 10 кВ с пластмассовой изоляцией. Расчет активного и индуктивного сопротивлений // Новости электротехники. 2005. № 4(34). URL: http://www.news.elteh.ru/arh/2005/4/15.php (дата обращения: 09.03.2020).
20. Пат. РФ 2619134. Способ синхронизации измерений в электрических сетях по частоте и фазе напряжения силовой сети / Ю. Г. Кононов, П. А. Звада. Заявка: 2015151889, 03.12.2015. Опубл. 12.05.2017.

Eng

1. Zelenskiy E. G., Kononov Yu. G., Levchenko I. I. (2016). Identification of distribution network parameters by synchronized measurements of currents and voltages. Elektrotekhnika, (7), pp. 3 – 8. [in Russian language]
2. Omorov T. T., Takyrbashev B. K. (2016). Identification of the state of the distribution electric network in automation systems for metering and energy management. Mekhatronika, avtomatizatsiya, upravlenie, (10), pp. 651 – 656. [in Russian language]
3. Khandeparkar K. V., Soman S. A., Gajjar G. (2017). Detection and Correction of Systematic Errors in Instrument Transformers Along with Line Parameter Estimation Using PMU Data. IEEE Transactions on Power Systems, Vol. 32, pp. 3089 – 3098. DOI: 10.1109/TPWRS.2016.2620990
4. Ritzmann D., Rens J., Wright P. S. et al. (2017). A Novel Approach to Noninvasive Measurement of Overhead Line Impedance Parameters. IEEE Transactions on Instrumentation and Measurement, Vol. 66, pp. 1155 – 1163. DOI: 10.1109/TIM.2017.2665958
5. Omorov T. T., Takyrbashev B. K., Osmonova R. Ch. (2017). Determination of the parameters of 0.4 kV distribution networks according to ASKUE. Energetik, (6), pp. 37 – 40. [in Russian language]
6. Omorov T. T., Osmonova R. Ch., Takyrbashev B. K. (2017). Diagnostics of the state of electric lines of distribution networks as part of ASKUE. Kontrol'. Diagnostika, (5), pp. 44 – 48. [in Russian language] DOI: 10.14489/td.2017.05.pp.044-048
7. Kononov Yu. G., Rybasova O. S., Mihaylenko V. S. (2018). Refinement of parameters of sections of medium voltage network lines according to synchronous measurements. Izvestiya vuzov. Elektromekhanika, (1), pp. 77 – 84. [in Russian language] DOI: 10.17213/0136-3360-2018-1-77-84
8. Omorov T. T., Osmonova R. Ch., Koybagarov T. Zh. (2018). Parametric identification of the distribution network as part of ASKUE. Vestnik YuUrGU. Seriya Energetika, (1), pp. 46 – 52. [in Russian language] DOI: 10.14529/power180106
9. Danilov M. I., Romanenko I. G. (2019). Method for identifying places of uncontrolled electricity consumption in electric networks of 0.4 kV. Izvestiya vuzov. Elektromekhanika, (4), pp. 90 – 96. [in Russian language]
10. Danilov M. I., Romanenko I. G. (2019). On the problem of determining current and voltage vectors in a distribution network according to AIIS KUE. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya Energetika, (4), pp. 87 – 94. [in Russian language]
11. Pegoraro P. A., Brady K., Castello P. et al. (2019). Compensation of Systematic Measurement Errors in a PMU-Based Monitoring System for Electric Distribution Grids. IEEE Transactions on Instrumentation and Measurement, Vol. 68, pp. 3871 – 3882. DOI: 10.1109/TIM.2019.2908703
12. Danilov M. I., Romanenko I. G. (2020). Method for calculating current and voltage vectors in distribution networks with automated information and measurement systems for monitoring and accounting for electricity. Energetik, (6), pp. 31 – 34. [in Russian language]
13. Larina E. T. (1984). Power cables and cable lines: a textbook for universities. Moscow: Energoatomizdat. [in Russian language]
14. Kryuchkov I. P., Starshinov V. A. (Eds.), Gusev Yu. P. et al. (2012). Short circuits and the choice of electrical equipment: a textbook for universities. Moscow: ID MEI. [in Russian language]
15. Short circuits in electrical installations. Calculation methods in electrical installations of alternating current voltage up to 1 kV. Ru Standard No. GOST 28249–93. Available at: http://docs.cntd.ru/document/gost-28249-93 (Accessed: 09.03.2020) [in Russian language]
16. The technique of infrared control of electrical equipment and overhead lines. Guidance document No. 153-34.0-20.363–99. Available at: http://www.thermoview.ru/pdf/rd.pdf (Accessed: 09.03.2020) [in Russian language]
17. Rules for the installation of electrical installations. Section 1.7. 7th ed. (2002). Available at: http://docs.cntd.ru/document/1200030218 (Accessed: 09.03.2020) [in Russian language]
18. Installation wires. Available at: http://kabelmag 2012.narod.ru/Kab_ustanovS.html (Accessed: 09.03.2020). [in Russian language]
19. Kamenskiy M., Holodniy S. (2005). Power cables 1 - 10 kV with plastic insulation. Calculation of active and inductive resistances. Novosti elektrotekhniki, 34(4). Available at: http://www.news.elteh.ru/arh/2005/34/15.php (Accessed: 09.03.2020). [in Russian language]
20. Kononov Yu. G., Zvada P. A. Method for synchronizing measurements in electrical networks by frequency and phase of voltage of a power network. Ru Patent No. 2619134. Russian Federation. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2020.08.pp.056-064

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2020.08.pp.056-064

and fill out the  form  

 

.

 

 
Поиск
На сайте?
Сейчас на сайте находятся:
 103 гостей на сайте
Опросы
Понравился Вам сайт журнала?
 
Rambler's Top100 Яндекс цитирования