Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Архив номеров
15 | 01 | 2025
2021, 02 февраль (February)

DOI: 10.14489/td.2021.02.pp.018-029

Серьезнов А. Н., Степанова Л. Н., Кабанов С. И., Рамазанов И. С., Чернова В. В., Кузнецов А. Б.
ЛОКАЦИЯ СИГНАЛОВ АКУСТИЧЕСКОЙ ЭМИССИИ В ОБРАЗЦАХ ИЗ ДЮРАЛЮМИНИЯ И УГЛЕПЛАСТИКА С ИСПОЛЬЗОВАНИЕМ АНТЕННЫ, СОСТОЯЩЕЙ ИЗ ВОЛОКОННО-ОПТИЧЕСКИХ ДАТЧИКОВ И ПЬЕЗОПРЕОБРАЗОВАТЕЛЕЙ
(c. 18-29)

Аннотация. Рассматриваются вопросы локации сигналов акустической эмиссии (АЭ) при работе с различными имитаторами (Су–Нильсена, электронным имитатором, металлическими шариками диаметром от 0,5 до 1,5 мм, сбрасываемых с различной высоты). Анализируется локация сигналов при работе с встроенным электронным имитатором, который генерировал сигналы с частотой 1 Гц и антенной, состоящей из двух волоконно-оптических датчиков (ВОД) Фабри–Перо и двух пьезопреобразователей, установленной на образцы из дюралюминия и углепластика Т800. Проведены испытания образца из углепластика с указанной антенной при его установке в вибростенде ВЭДС-10. Сигналы АЭ регистрировали антенной при частоте вибрации 20…50 Гц в диапазоне ускорений 0,3…0,8g. Определено влияние временного дрейфа, зарегистрированного пьезопреобразователями, на результаты измерения. Установлено, что волоконно-оптическими датчиками ВОД временной дрейф не зарегистрирован, однако их чувствительность меньше чувствительности пьезопреобразователей более чем в 14 раз.

Ключевые слова:  антенна, локация, волоконно-оптический датчик, пьезопреобразователь, акустическая эмиссия, углепластик, дюралюминий.

 

Seryeznov А. N., Stepanova L. N., Kabanov S. I., Ramazanov I. S., Chernova V. V., Kuznetsov A. B.
ACOUSTIC EMISSION SIGNALS LOCATION IN DURALUMIN AND CARBON FIBER SAMPLES BY OPTICAL FIBER AND PIEZOELECTRIC TRANSDUCER SENSORS ANTENNA
(pp. 18-29)

Abstract. The issues are considered of acoustic emission (AE) signals location generated by various simulators (Su–Nielsen, electronic simulator, metal balls of various diameter from 0.5 to 1.5 mm, dropped from different heights). Signals generated by built-in electronic simulator with a frequency of 1 Hz location is analyzed performed by an antenna consisting of two Fabry–Perot fiber-optic sensors (FOS) and two piezoelectric transducers, mounted on samples made of duralumin and T800 carbon fiber. A carbon fiber reinforced plastic sample with the defined above antenna mounted was tested with a VEDS-10 vibration stand. AE signals were registered under the vibration frequency of 20…50 Hz in the acceleration range of 0.3…0.8g. The influence of the time drift recorded by the piezoelectric transducers on the measurement results is determined. It was found that the time drift was not recorded by fiber-optic FOS sensors, but their sensitivity is more than 14 times less than that of piezoelectric transducers.

Keywords: antenna, location, fiber-optic sensor, piezoelectric transducer, acoustic emission, carbon fiber reinforced plastic, duralumin.

Рус

А. Н. Серьезнов, Л. Н. Степанова, С. И. Кабанов, И. С. Рамазанов (ФГУП «Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина», Новосибирск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
В. В. Чернова (ФГБОУ ВО «Сибирский государственный университет путей сообщения», Новосибирск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
А. Б. Кузнецов (ФГУП «Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина», Новосибирск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

А. N. Seryeznov, L. N. Stepanova, S. I. Kabanov, I. S. Ramazanov (Chaplygin Siberian Research Institute of Aviation, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. V. Chernova (Siberian State University of Railway Transport, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. B. Kuznetsov (Chaplygin Siberian Research Institute of Aviation, Novosibirsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Рус

1. Madaras E. Underscore the NASA role in the development of the nondestructive testing of the composite / NASA Langley research center, scientific department of nondestructive testing of structures and materials. Gempton. VA23681.
2. Prosser W., Madaras E., Studor G. Acoustic emission detection of impact damage on space shuttle structures // Journal of Acoustic Emission. 2005. V. 23. P. 37 – 46.
3. Aljets D. Acoustic emission source location in composite aircraft structures using modal analysis. Pontypridd: University of Glamorgan, 2011. 163 p.
4. Pappu R. P. Acoustic emission detection using optical fiber sensors for the aerospace applications. Birmingham: Astor Univ., 2011. 177 p.
5. Kahandawa G. C., Epaachchi J., Wang H. Use of FBG sensors for SHM in aerospace structures // Photonic Sensors. 2012. V. 2, No. 3. P. 203 – 214.
6. Liang S., Shang C., Lin W. Fiber-optic intrinsic distributed acoustic emission sensor for large structures health monitoring // Optics Letters. 2009. V. 34, No. 12. P. 1858 – 1860.
7. Chen Z., Ansari F. Fibre optic acoustic emission distributed crack sensor for large structures // Journal of structural control. 2000. V. 7, No. 1. P. 119 – 129.
8. Zhao J., Shi Y., Shan N., Yuan X. Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement // Optics and Laser Technology. 2008. V. 40, No. 6. P. 874 – 880.
9. Серьезнов А. Н., Степанова Л. Н., Кабанов С. И. и др. Акустико-эмиссионный контроль авиационных конструкций. М.: Машиностроение/Машиностроение–Полет, 2008. 440 с.
10. Серьезнов А. Н., Степанова Л. Н., Муравьев В. В. и др. Диагностика объектов транспорта методом акустической эмиссии. М.: Машиностроение/Машино¬строение–Полет, 2004. 368 с.
11. Степанова Л. Н., Чернова В. В., Кабанов С. И. Методика браковки дефектов в образцах из углепластика по параметрам сигналов акустической эмиссии при статическом и тепловом нагружении // Контроль. Диагностика. 2020. Т. 23, № 6. С. 4 – 13.
12. Башков О. В., Ромашко Р. В., Зайков В. И. и др. Детектирование сигналов акустической эмиссии волоконно-оптическими преобразователями // Дефектоскопия. 2017. № 6. С. 18 – 25.
13. Бочкова С. Д., Волковский С. Д., Ефимов М. Е. и др. Метод локализации воздействия в композитном материале с помощью волоконно-оптических датчиков акустической эмиссии // Приборы и техника эксперимента. 2020. № 4. С. 73 – 77.
14. Степанова Л. Н., Чернова В. В., Рамазанов И. С. Методика локации сигналов акустической эмиссии при статических испытаниях образцов из углепластика // Дефектоскопия. 2015. № 4. С. 53 – 62.
15. Пат. 2 726 278 РФ. МПК G 01 N 29/14. Многоканальное акустико-эмиссионное устройство / Л. Н. Степанова, С. И. Кабанов, А. Е. Ельцов; опубл. 10.07.2020 // Бюл. 2020. № 19.
16. Серьезнов А. Н., Степанова Л. Н., Кабанов С. И., Чернова В. В. Диагностический модуль акустико-эмиссионной системы с автоматической фильтрацией помех // Датчики и системы. 2020. № 5. С. 3 – 8.

Eng

1. Madaras E. Underscore the NASA role in the development of the nondestructive testing of the composite. NASA Langley research center, scientific department of nondestructive testing of structures and materials. Gempton.
2. Prosser W., Madaras E., Studor G. (2005). Acoustic emission detection of impact damage on space shuttle structures. Journal of Acoustic Emission, Vol. 23, pp. 37 – 46.
3. Aljets D. (2011). Acoustic emission source location in composite aircraft structures using modal analysis. Pontypridd: University of Glamorgan.
4. Pappu R. P. (2011). Acoustic emission detection using optical fiber sensors for the aerospace applications. Birmingham: Aston University.
5. Kahandawa G. C., Epaachchi J., Wang H. (2012). Use of FBG sensors for SHM in aerospace structures. Photonic Sensors, Vol. 2, (3), pp. 203 – 214.
6. Liang S., Shang C., Lin W. (2009). Fiber-optic intrinsic distributed acoustic emission sensor for large structures health monitoring. Optics Letters, Vol. 34, (12), pp. 1858 – 1860.
7. Chen Z., Ansari F. (2000). Fibre optic acoustic emission distributed crack sensor for large structures. Journal of structural control, Vol. 7, (1), pp. 119 – 129.
8. Zhao J., Shi Y., Shan N., Yuan X. (2008). Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement. Optics and Laser Technology, Vol. 40, (6), pp. 874 – 880.
9. Ser'eznov A. N., Stepanova L. N., Kabanov S. I. et al. (2008). Acoustic emission control of aircraft structures. Moscow: Mashinostroenie/Mashinostroenie–Polet. [in Russian language]
10. Ser'eznov A. N., Stepanova L. N., Murav'ev V. V. et al. (2004). Diagnostics of transport facilities by the method of acoustic emission. Moscow: Mashinostroe-nie/Mashinostroenie–Polet. [in Russian language]
11. Stepanova L. N., Chernova V. V., Kabanov S. I. (2020). Method of rejection of defects in carbon fiber samples by parameters of acoustic emission signals under static and thermal loading. Kontrol'. Diagnostika, Vol. 23, (6), pp. 4 – 13. [in Russian language]
12. Bashkov O. V., Romashko R. V., Zaykov V. I. et al. (2017). Detection of acoustic emission signals by fiber-optic converters. Defektoskopiya, (6), pp. 18 – 25. [in Russian language]
13. Bochkova S. D., Volkovskiy S. D., Efimov M. E. et al. (2020). Method of localization of impact in composite material using fiber-optic acoustic emission sensors. Pribory i tekhnika eksperimenta, (4), pp. 73 – 77. [in Russian language]
14. Stepanova L. N., Chernova V. V., Ramazanov I. S. (2015). Method for locating acoustic emission signals during static testing of CFRP specimens. Defektoskopiya, (4), pp. 53 – 62. [in Russian language]
15. Stepanova L. N., Kabanov S. I., El'tsov A. E. (2020). Multichannel acoustic emission device. Ru Patent No. 2 726 278. Russian Federation. [in Russian language]
16. Ser'eznov A. N., Stepanova L. N., Kabanov S. I., Chernova V. V. (2020). Diagnostic module of acoustic emission system with automatic noise filtering. Datchiki i sistemy, (5), pp. 3 – 8. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 450 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2021.02.pp.018-029

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 450 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2021.02.pp.018-029

and fill out the  form  

 

.

 

 
Поиск
На сайте?
Сейчас на сайте находятся:
 59 гостей на сайте
Опросы
Понравился Вам сайт журнала?
 
Rambler's Top100 Яндекс цитирования