Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Архив номеров
22 | 12 | 2024
2022, 11 ноябрь (November)

DOI: 10.14489/td.2022.11.pp.020-030

Григорьев С. Н., Козочкин М. П., Порватов А. Н., Малахинский А. П., Мустафаев Э. С.
ОТЛАДКА РЕЖИМОВ ПРОЦЕССА ЭЛЕКТРОЭРОЗИОННОЙ ОБРАБОТКИ С ПОМОЩЬЮ АНАЛИЗА ВИБРОАКУСТИЧЕСКИХ СИГНАЛОВ
(c. 20-30)

Аннотация. Расширяющаяся потребность промышленности в обработке ответственных изделий из труднообрабатываемых материалов и твердых сплавов делает актуальными исследования, направленные на поиск оптимальных режимов электроэрозионной обработки. Это, например, определение режимов, обеспечивающих наибольшую производительность или КПД, или минимальный износ инструмента при обеспечении необходимой шероховатости и точности изделия. Предлагается дополнить контроли¬руемые при электроэрозионной обработке параметры неэлектрическими параметрами, к которым относятся параметры виброакустических сигналов, сопровождающих рабочий процесс. Показано, что параллельная запись сигналов разрядного тока и вибраций позволяет выявить недостатки условий обработки и целенаправленно влиять на режимы технологического процесса для приближения условий обработки к оптимальным.

Ключевые слова:  электроэрозионная обработка, виброакустическая диагностика, мониторинг, спектр сигнала, разрядный ток, рабочие импульсы, короткое замыкание.

 

Grigoriev S. N., Kozochkin M. P., Porvatov A. N., Malakhinsky A. P., Mustafaev E. S.
ADJUSTMENT OF THE ELECTRICAL DISCHARGE MACHINING PROCESS BY MEANS OF VIBROACOUSTIC SIGNAL ANALYSIS
(pp. 20-30)

Abstract. Expanding industry demand for machining of critical products from hard-to-machine materials and hard alloys makes the research aimed at finding optimal modes of electrical discharge machining topical. This is, for example, the determination of modes that provide the highest productivity or efficiency, or minimum tool wear, while ensuring the necessary roughness and accuracy of the product. In the present work, it is proposed to supplement the parameters monitored in electric discharge machining with non-electrical parameters, which include the parameters of vibroacoustic signals that accompany the working process. The paper shows that parallel recording of the discharge current vibration signals makes it possible to reveal the drawbacks of processing conditions and to influence purposefully the technological process modes in order to bring the processing conditions closer to the optimum ones.

Keywords: electrical discharge machining, vibroacoustic diagnostics, monitoring, signal spectrum, discharge current, operating pulses, short circuit.

Рус

С. Н. Григорьев, М. П. Козочкин, А. Н. Порватов, А. П. Малахинский, Э. С. Мустафаев (ФГБОУ ВО «МГТУ «СТАНКИН», Москва, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Eng

S. N. Grigoriev, M. P. Kozochkin, A. N. Porvatov, A. P. Malakhinsky, E. S. Mustafaev (Moscow State University of Technology “STANKIN”, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Рус

1. Karmiris-Obratański P., Zagórski K., Papazoglou E. L. et al. Surface and Subsurface Quality of Titanium Grade 23 Machined by Electro Discharge Machining // Materials. 2022. V. 15, No. 1.
2. Abu Qudeiri J. E., Mourad A. H. I., Ziout A. et al. Electric Discharge Machining of Titanium and Its Alloys: Review // The International Journal of Advanced Manufacturing Technology. 2018. V. 96, No. 1-4. P. 1319 – 1339.
3. Abu Qudeiri J. E., Ziout A., Mourad A. H. I. et al. Advanced Electric Discharge Machining of Stainless Steels: Assessment of the State of the Art, Gaps and Future Prospect // Materials. 2019. V. 12, No. 6. P. 907.
4. Manjaiah M., Narendranath S., Basavarajappa S. A Review on Machining of Titanium Based Alloys Using EDM and WEDM // Rev. Adv. Mater. Sci. 2014. V. 36. P. 89 – 111.
5. Qudeiri J. E. A., Zaiout A., Mourad A. H. I. et al. Principles and Characteristics of Different EDM Processes in Machining Tool and Die Steels // Applied Sciences (Switzerland). 2020. V. 10, No. 6. P. 2082.
6. Tzeng Y., Chen F. Multi-Objective Optimization of High-Speed EDM Process Using a Tagachi Fuzzy-Based Approach // Materials and Design. 2007. V. 28, No. 4. Р. 1159 – 1168.
7. Елисеев Ю. С., Саушкин Б. П. Электроэрозионная обработка изделий авиационно-космической техники. М.: Изд-во МГТУ им. Н. Э. Баумана, 2010. 437 с.
8. Kozak J., Rajurkar K. P., Makkar Y. Selected Problems of Micro-Electrochemical Machining // Journal of Materials Processing Technology. 2004. V. 149, No. 1-3. P. 426 – 431.
9. Grigoriev S. N., Gurin V. D., Volosova M. A., Cherkasova N. Y. Development of Residual Cutting Tool Life Prediction Algorithm by Processing on CNC Machine Tool // Materialwissenschaft und Werkstofftechnik. 2013. V. 44, No. 9. P. 790 – 796.
10. Grigoriev S. N., Martinov G. M. Scalable Open Cross-Platform Kernel of PCNC System for Multi-Axis Machine Tool // Procedia CIRP. Zurich, 4 – 7 June 2012. Zurich, 2012. P. 238 – 243.
11. Grigoriev S. N., Masterenko D. A., Teleshevskii V. I., Emelyanov P. N. Contemporary State and Outlook for Development of Metrological Assurance in the Machine-Building Industry // Measurement Techniques. 2013. V. 55, No. 11. P. 1311 – 1315.
12. Немилов Е. Ф. Справочник по электроэрозионной обработке материалов. Л.: Машиностроение, 1989. 164 с.
13. Григорьев С. Н., Телешевский В. И. Проблемы измерений в технологических процессах формообразования // Измерительная техника. 2011. № 7. С. 3 – 7.
14. Kozochkin M. P., Grigor'ev S. N., Okun'kova A. A., Porvatov A. N. Monitoring of Electric Discharge Machining by Means of Acoustic Emission // Russian Engineering Research. 2016. V. 36, No. 3. P. 244 – 248.
15. Артамонов Б. А., Волков Ю. С. Анализ моделей электрохимической и электроэрозионной обработки. Часть II. Модели процессов электроэрозионной обработки. Проволочная вырезка. М.: ВНИИПИ, 1991. 144 с.
16. Сафронов И. И., Цуркан И. В., Фатеев В. В., Семенчук A. B. Электроэрозионные процессы на электродах и микроструктурнофазовый состав легированного слоя. Chisinau: Stiinta, 1999. 591 с.
17. Кабалдин Ю. Г., Сарилов М. Ю., Биленко С. В. Повышение устойчивости процесса электроэрозионной обработки и качества обработанных поверхностей на основе подходов искусственного интеллекта. Комсомольск-на-Амуре: КнАГТУ, 2007. 190 с.
18. Григорьев С. Н., Козочкин М. П., Федоров С. В. и др. Исследование процесса электроэрозионной обработки средствами виброакустической диагностики // Измерительная техника. 2015. № 8. С. 33 – 37.
19. Верхотуров А. Д. Формирование поверхностного слоя металлов при электроискровом легировании. Владивосток: Дальнаука, 1995. 282 с.
20. Пячин С. А. Влияние размеров и расположения электродов на перенос металлов при электроискровом легировании // Физика и химия обработки материалов. 2017. № 1. С. 17 – 28.
21. Абляз Т. Р. Изучение изменения свойств электродов в зависимости от режимов проволочновырезной электроэрозионной обработки // Вестник ПГТУ. Машиностроение, материаловедение. 2011. Т. 13, № 1. С. 87 – 93.
22. Smith C., Koshy P. Applications of Acoustic Mapping in Electrical Discharge Machining // CIRP Annals. 2013. V. 62, No. 1. P. 171 – 174.
23. Faisal N., Kumar K. Optimization of Machine Process Parameters in EDM for EN 31 Using Evolutionary Optimization Techniques // Technologies. 2018. V. 6, No. 2. P. 54.
24. Фотеев Н. К. Качество поверхности после электроэрозионной обработки // Станки и инструмент. 1997. № 8. С. 43 – 48.
25. Волгин В. М. Расчет распределения плотности тока при электрохимическом формообразовании в трехмерных областях методом граничных элементов. Тула: ТулПИ, 1999. С. 3 – 14.
26. Liu J., Wang R., Qian Y. The Formation of a Single-Pulse Electrospark Deposition Spot // Surface and Coatings Technology. 2005. V. 200. P. 2433 – 2437.
27. Gu L., Zhu Y., Zhang F. et al. Mechanism Analysation and Parameter Optimisation of Electro Discharge Machining of Titanium-Zirconium-Molybdenum Alloy // Journal of Manufacturing Processes. 2018. V. 32. P. 773 – 781.
28. Tran T.-H., Nguyen M.-C., Luu A.-T. et al. Electrical Discharge Machining with SiC Powder-Mixed Dielectric: An Effective Application in the Machining Process of Hardened 90CrSi Steel // Machines. 2020. V. 8, No. 3. P. 36.

Eng

1. Karmiris-Obratański P., Zagórski K., Papazoglou E. L. et al. (2022). Surface and Subsurface Quality of Titanium Grade 23 Machined by Electro Discharge Machining. Materials, Vol. 15, (1).
2. Abu Qudeiri J. E., Mourad A. H. I., Ziout A. et al. (2018). Electric Discharge Machining of Titanium and Its Alloys: Review. The International Journal of Advanced Manufacturing Technology, Vol. 96, (1-4), pp. 1319 – 1339.
3. Abu Qudeiri J. E., Ziout A., Mourad A. H. I. et al. (2019). Advanced Electric Discharge Machining of Stainless Steels: Assessment of the State of the Art, Gaps and Future Prospect. Materials, Vol. 12, (6).
4. Manjaiah M., Narendranath S., Basavarajappa S. (2014). A Review on Machining of Titanium Based Alloys Using EDM and WEDM. Reviews on Advanced Materials Science, Vol. 36, pp. 89 – 111.
5. Qudeiri J. E. A., Zaiout A., Mourad A. H. I. et al. (2020). Principles and Characteristics of Different EDM Processes in Machining Tool and Die Steels. Applied Sciences, Vol. 10, (6).
6. Tzeng Y., Chen F. (2007). Multi-Objective Optimization of High-Speed EDM Process Using a Tagachi Fuzzy-Based Approach. Materials and Design, Vol. 28, (4), pp. 1159 – 1168.
7. Eliseev Yu. S., Saushkin B. P. (2010). Electroerosive processing of aerospace products. Moscow: Izdatel'stvo MGTU im. N. E. Baumana. [in Russian language]
8. Kozak J., Rajurkar K. P., Makkar Y. (2004). Selected Problems of Micro-Electrochemical Machining. Journal of Materials Processing Technology, Vol. 149, (1-3), pp. 426 – 431.
9. Grigoriev S. N., Gurin V. D., Volosova M. A., Cherkasova N. Y. (2013). Development of Residual Cutting Tool Life Prediction Algorithm by Processing on CNC Machine Tool. Materialwissenschaft und Werkstofftechnik, Vol. 44, (9), pp. 790 – 796.
10. Grigoriev S. N., Martinov G. M. (2012). Scalable Open Cross-Platform Kernel of PCNC System for Multi-Axis Machine Tool. Procedia CIRP, pp. 238 – 243. Zurich.
11. Grigoriev S. N., Masterenko D. A., Teleshevskii V. I., Emelyanov P. N. (2013). Contemporary State and Outlook for Development of Metrological Assurance in the Machine-Building Industry. Measurement Techniques, Vol. 55, (11), pp. 1311 – 1315.
12. Nemilov E. F. (1989). Handbook of electroerosive processing of materials. Leningrad: Mashinostroenie. [in Russian language]
13. Grigor'ev S. N., Teleshevskiy V. I. (2011). Problems of measurements in technological processes of shaping. Izmeritel'naya tekhnika, (7), pp. 3 – 7. [in Russian language]
14. Kozochkin M. P., Grigor'ev S. N., Okun'kova A. A., Porvatov A. N. (2016). Monitoring of electric discharge machining by means of acoustic emission. Russian Engineering Research, Vol. 36, (3), pp. 244 – 248.
15. Artamonov B. A., Volkov Yu. S. (1991). Analysis of models of electrochemical and electroerosive processing. Part II. Models of EDM Processes. Wire cut. Moscow: VNIIPI. [in Russian language]
16. Safronov I. I., Tsurkan I. V., Fateev V. V., Semenchuk A. B. (1999). Electroerosive processes on electrodes and microstructural-phase composition of the alloyed layer. Chisinau: Stiinta. [in Russian language]
17. Kabaldin Yu. G., Sarilov M. Yu., Bilenko S. V. (2007). Improving the stability of the EDM process and the quality of machined surfaces based on artificial intelligence approaches. Komsomol'sk-na-Amure: KnAGTU. [in Russian language]
18. Grigor'ev S. N., Kozochkin M. P., Fedorov S. V. et al. (2015). Study of the process of electroerosive machining by means of vibroacoustic diagnostics. Izmeritel'naya tekhnika, (8), pp. 33 – 37. [in Russian language]
19. Verhoturov A. D. (1995). Formation of the surface layer of metals during electrospark alloying. Vladivostok: Dal'nauka. [in Russian language]
20. Pyachin S. A. (2017). Influence of the size and location of electrodes on the transfer of metals during electrospark alloying. Fizika i himiya obrabotki materialov, (1), pp. 17 – 28. [in Russian language]
21. Ablyaz T. R. (2011). Study of changes in the properties of electrodes depending on the modes of wire-cut electroerosive machining. Vestnik PGTU. Mashinostroenie, materialovedenie, Vol. 13, (1), pp. 87 – 93. [in Russian language]
22. Smith C., Koshy P. (2013). Applications of Acoustic Mapping in Electrical Discharge Machining. CIRP Annals, Vol. 62, (1), pp. 171 – 174.
23. Faisal N., Kumar K. (2018). Optimization of Machine Process Parameters in EDM for EN 31 Using Evolutionary Optimization Techniques. Technologies, Vol. 6, (2).
24. Foteev N. K. (1997). Surface quality after EDM. Stanki i instrument, (8), pp. 43 – 48. [in Russian language]
25. Volgin V. M. (1999). Calculation of the current density distribution during electrochemical shaping in three-dimensional regions by the boundary element method, pp. 3 – 14. Tula: TulPI. [in Russian language]
26. Liu J., Wang R., Qian Y. (2005). The Formation of a Single-Pulse Electrospark Deposition Spot. Surface and Coatings Technology, Vol. 200, pp. 2433 – 2437.
27. Gu L., Zhu Y., Zhang F. et al. (2018). Mechanism Analysation and Parameter Optimisation of Electro Discharge Machining of Titanium-Zirconium-Molybdenum Alloy. Journal of Manufacturing Processes, Vol. 32, pp. 773 – 781.
28. Tran T.-H., Nguyen M.-C., Luu A.-T. et al. (2020). Electrical Discharge Machining with SiC Powder-Mixed Dielectric: An Effective Application in the Machining Process of Hardened 90CrSi Steel. Machines, Vol. 8, (3).

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2022.11.pp.020-030

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2022.11.pp.020-030

and fill out the  form  

 

.

 

 
Поиск
На сайте?
Сейчас на сайте находятся:
 101 гостей на сайте
Опросы
Понравился Вам сайт журнала?
 
Rambler's Top100 Яндекс цитирования