Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Архив номеров
22 | 12 | 2024
2023, 06 июнь (June)

DOI: 10.14489/td.2023.06.pp.012-019

Соколовская Ю. Г., Подымова Н. Б.
КОЛИЧЕСТВЕННЫЙ АНАЛИЗ РАСПРЕДЕЛЕНИЯ ЛОКАЛЬНОЙ ПОРИСТОСТИ В УГЛЕПЛАСТИКОВЫХ КОНСТРУКЦИЯХ ЛАЗЕРНЫМ ОПТИКО-АКУСТИЧЕСКИМ МЕТОДОМ
(c. 12-19)

Аннотация. Представлен метод оценки величины пористости материала по экспериментально измеренной фазовой скорости распространяющихся в нем продольных акустических волн. Для создания зондирующих импульсов использовалось лазерное возбуждение ультразвука. Продемонстрирована возможность получения распределений величин локальной пористости в исследуемом участке конструкции на примере трех углепластиковых стрингерных панелей. Показано наличие в исследованных конструкциях областей с существенным разбросом величины локальной пористости.

Ключевые слова:  углепластик, лазерный ультразвук, пористость.

 

Sokolovskaya Yu. G., Podymova N. B.
QUANTITATIVE ANALYSIS OF THE DISTRIBUTION OF LOCAL POROSITY IN CARBON FIBER STRUCTURES BY LASER OPTOACOUSTIC METHOD
(pp. 12-19)

Abstract. Currently, an urgent problem is the development of non-destructive diagnostic techniques for quantifying the level of local porosity of composite structures. The paper presents a method for estimating the porosity of a material from the experimentally measured phase velocity of longitudinal acoustic waves propagating in it. Laser excitation of ultrasound was used to create probing pulses. Porosity was calculated using experimentally measured phase velocities of longitudinal acoustic waves propagating in the composite. The proposed method allows one-way access to the object during measurements, which makes it possible to study structures of variable thickness and complex shape. The possibility of obtaining distributions of local porosity values in the studied section of the structure is demonstrated by the example of three carbon fiber stringer panels. The study showed that locality of the porosity value and its change from point to point plays an important role in such constructions, and the maximum local porosity of this area of the panel may differ from the average volumetric porosity by more than two times. The possibility of obtaining a “map” of the distribution of the local porosity of the panel section in the plane of laying the carbon fabric is also demonstrated. This method is quite operational, which allows it to be used within the framework of real production in order to improve the conditions and methods of production.

Keywords: carbon fiber plastic composites, laser ultrasound, porosity.

Рус

Ю. Г. Соколовская, Н. Б. Подымова (МГУ им. М. В. Ломоносова, Москва, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

 Yu. G. Sokolovskaya, N. B. Podymova (M. V. Lomonosov Moscow State University, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Рус

1. Soutis C. Fibre Reinforced Composites in Aircraft Construction // Progress in Aerospace Sciences. 2005. V. 41. P. 143 – 151.
2. Duchene P., Chaki S., Ayadi A., Krawczak P. A Review of Non-Destructive Techniques Used for Mechanical Damage Assessment in Polymer Composites // J. Mater. Sci. 2018. V. 53. P. 7915 – 7938.
3. Бойчук А. С., Диков И. А., Генералов А. С. Особенности ультразвукового контроля конструкций из углепластика с выпуклой поверхностью с использованием фазированных решеток и оправок типа waterbox // Контроль. Диагностика. 2019. № 3. C. 14 – 21.
4. Прикладная механика композитов: сб. ст. / под ред. Ю. М. Тарнопольского. М.: Мир, 1989. 358 с.
5. Душин М. И., Донецкий К. И., Караваев Р. Ю. Установление причин образования пористости при изготовлении ПКМ // Труды ВИАМ: Электрон. науч. журн. 2016. № 6. С. 68 – 78.
6. Adams R. D., Cawle P. A Review of Defect Types and Nondestructive Testing Techniques for Composites and Bonded Joint // NDT Int. 1988. V. 21, No. 4. P. 208 – 222.
7. Stamopoulos A. G., Tserpes K. I., Dentsoras A. J. Quality Assessment of Porous CFRP Specimens Using X-ray Computed Tomography Data and Artificial Neural Networks // Compos. Struct. 2018. V. 192. P. 327 – 335.
8. Вавилов В. П., Billard S., Айвазян В. М. Тепловой томограф для испытаний композиционных материалов // Дефектоскопия. 2014. № 11. С. 71 – 75.
9. Scott A. E., Sinclair I., Spearing S. M., et al. Influence of Voids on Damage Mechanisms in Carbon/Epoxy Composites Determined via High Resolution Computed Tomography // Compos. Sci. Technol. 2014. V. 90. P. 147 – 153.
10. Nsengiyumva W., Zhong Sh., Lin J., et al. Advances, Limitations and Prospects of Nondestructive Testing and Evaluation of thick Composites and Sandwich Structures: A state-of-the-art review // Compos. Struct. 2020. V. 256. P. 112951.
11. Степанова Л. Н., Чернова В. В., Петрова Е. С. Прочностные испытания гофрированного авиационного лонжерона из углепластика // Контроль. Диагностика. 2022. Т. 25, № 3. C. 18 – 25.
12. Chimenti D. E. Review of Air-Coupled Ultrasonic Materials Characterization // Ultrasonics. 2014. V. 54. P. 1804 – 1816.
13. Самокрутов А. А., Шевалдыкин В. Г. Исследование распространения ультразвука в слоистых композиционных материалах // Заводская лаборатория. Диагностика материалов. 2017. Т. 83, № 1-1. C. 48 – 51.
14. Соколовская Ю. Г., Подымова Н. Б., Карабутов А. А. Лазерно-ультразвуковой метод измерения акустического импеданса для определения пористости перекрестно-армированных углепластиков // Контроль. Диагностика. 2020. № 3. С. 56 – 63.
15. Соколовская Ю. Г., Подымова Н. Б., Карабутов А. А. Применение широкополосной лазерно-ультразвуковой спектроскопии для неразрушающего контроля пористости углепластиков с различным объемным содержанием углеродного волокна // Перспективные материалы. 2021. № 3. С. 76 – 84.
16. Поляков В. В., Головин А. В. Влияние пористости на скорости ультразвуковых волн в металлах // Письма в ЖТФ. 1994. Т. 20, вып. 11. С. 54 – 57.
17. Клюев В. В., Соснин Ф. Р., Ковалев А. В. и др. Неразрушающий контроль и диагностика: справочник. М.: Машиностроение, 2003. 656 с.
18. Ермолов И. Н., Ланге Ю. В. Ультразвуковой контроль // Неразрушающий контроль: справочник: в 8 т. Т. 3. 2-е изд., дораб. М.: Машиностроение, 2006. 864 с.

Eng

1. Soutis C. (2005). Fibre Reinforced Composites in Aircraft Construction. Progress in Aerospace Sciences, Vol. 41, pp. 143 – 151.
2. Duchene P., Chaki S., Ayadi A., Krawczak P. (2018). A Review of Non-Destructive Techniques Used for Mechanical Damage Assessment in Polymer Composites. Journal of Materials Science, Vol. 53, pp. 7915 – 7938.
3. Boychuk A. S., Dikov I. A., Generalov A. S. (2019). Convex surfaces of cfrp structures ultrasonic testing features by phased arrays and waterbox. Kontrol'. Diagnostika, (3), pp. 14 – 21. [in Russian language] DOI: 10.14489/td.2019.03.pp.014-021
4. Tarnopol'skiy Yu. M. (1989). Applied Mechanics of Composites: Collection of Articles. Moscow: Mir. [in Russian language]
5. Dushin M. I., Donetskiy K. I., Karavaev R. Yu. (2016). Determination of the causes of porosity formation in the manufacture of PCM. Trudy VIAM, (6), pp. 68 – 78. [in Russian language]
6. Adams R. D., Cawle P. (1988). A Review of Defect Types and Nondestructive Testing Techniques for Composites and Bonded Joint. NDT International, Vol. 21 (4), pp. 208 – 222.
7. Stamopoulos A. G., Tserpes K. I., Dentsoras A. J. (2018). Quality Assessment of Porous CFRP Specimens Using X-ray Computed Tomography Data and Artificial Neural Networks. Composite Structures, Vol. 192, pp. 327 – 335.
8. Vavilov V. P., Billard S., Ayvazyan V. M. (2014). Thermal tomograph for composite testing. Defektoskopiya, (11), pp. 71 – 75. [in Russian language]
9. Scott A. E., Sinclair I., Spearing S. M. et al. (2014). Influence of Voids on Damage Mechanisms in Carbon/Epoxy Composites Determined via High Resolution Computed Tomography. Composites Science and Technology, Vol. 90, pp. 147 – 153.
10. Nsengiyumva W., Zhong Sh., Lin J. et al. (2020). Advances, Limitations and Prospects of Nondestructive Testing and Evaluation of thick Composites and Sandwich Structures: A state-of-the-art review. Composite Structures, Vol. 256.
11. Stepanova L. N., Chernova V. V., Petrova E. S. (2022). Strength tests of a corrugated aircraft cfrp spar. Kontrol'. Diagnostika, Vol. 25 (3), pp. 18 – 25. [in Russian language] DOI: 10.14489/td.2022.03.pp.018-025
12. Chimenti D. E. (2014). Review of Air-Coupled Ultrasonic Materials Characterization. Ultrasonics, Vol. 54, pp. 1804 – 1816.
13. Samokrutov A. A., Shevaldykin V. G. (2017). Investigation of ultrasonic propagation in layered composites. Zavodskaya laboratoriya. Diagnostika materialov, Vol. 83 (1-1), pp. 48 – 51. [in Russian language]
14. Sokolovskaya Yu. G., Podymova N. B., Karabutov A. A. (2020). Laser-ultrasonic method of acoustic impedance measurement for quantitative porosity estimation of crossply carbon fiber reinforced plastic materials. Kontrol'. Diagnostika, (3), pp. 56 – 63. [in Russian language] DOI: 10.14489/td.2020.03.pp.056-063
15. Sokolovskaya Yu. G., Podymova N. B., Karabutov A. A. (2021). Application of broadband laser-ultrasound spectroscopy for nondestructive control of the porosity of carbon plastics with different volume content of carbon fiber. Perspektivnye materialy, (3), pp. 76 – 84. [in Russian language]
16. Polyakov V. V., Golovin A. V. (1994). Influence of porosity on ultrasonic wave velocities in metals. Pis'ma v ZhTF, Vol. 20 (11), pp. 54 – 57. [in Russian language]
17. Klyuev V. V., Sosnin F. R., Kovalev A. V. et al. (2003). Nondestructive Testing and Diagnostics: Handbook. Moscow: Mashinostroenie. [in Russian language]
18. Ermolov I. N., Lange Yu. V. (2006). Ultrasonic inspection. Nondestructive testing: handbook: in 8 volumes. Vol. 3. 2nd ed. Moscow: Mashinostroenie. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2023.06.pp.012-019

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2023.06.pp.012-019

and fill out the  form  

 

.

 

 
Поиск
На сайте?
Сейчас на сайте находятся:
 70 гостей на сайте
Опросы
Понравился Вам сайт журнала?
 
Rambler's Top100 Яндекс цитирования