Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Архив номеров
25 | 11 | 2024
2024, 10 октябрь (October)

DOI: 10.14489/td.2024.10.pp.004-015

Махов В. Е., Широбоков В. В., Емельянов А. В., Закутаев А. А.
ИССЛЕДОВАНИЕ ВОЗМОЖНОСТЕЙ ПЛЕНОПТИЧЕСКОЙ РЕГИСТРАЦИИ МАЛОЗАМЕТНЫХ УДАЛЕННЫХ ОБЪЕКТОВ
(c 4-15)

Аннотация. Рассматриваются особенности обнаружения малозаметных объектов пленоптическими оптико-электронными системами (ПОЭС). Представлены схемы и алгоритмы формирования изображений ПОЭС для получения информации о малозаметных объектах с учетом специфики работы ПОЭС. Теоретически обоснована возможность повышения вероятности обнаружения малозаметных объектов, которая подтверждена расчетом трассировки хода лучей в ПОЭС. В процессе наблюдения малозаметных малоконтрастных образцов световых объектов на внешнем световом фоне экспериментально подтверждены основные положения теоретических обоснований. С учетом особенностей объектов и фона сформирован комплекс алгоритмов анализа и обнаружения малозаметных объектов, на основе которого разработана методика их применения и оценки достоверности обнаружения удаленных малозаметных объектов. Показаны наглядные возможности реализации алгоритмов анализа наблюдаемых объектов программными средствами фирмы National Instruments. Приведен сравнительный анализ результатов обнаружения малозаметных объектов различными ОЭС. Определена область практического применения регистрации ПОЭС малозаметных объектов, а также степень влияния различных внешних и внутренних факторов на процесс регистрации ПОЭС малозаметных объектов наблюдения.

Ключевые слова:  оптико-электронная система (ОЭС), пленоптическая ОЭС (ПОЭС), малозаметный удаленный объект, глубина резко изображаемого пространства (ГРИП), алгоритмы получения координатной информации, непрерывное вейвлет-преобразование (НВП), кратномасштабный анализ (КМА), National Instruments (NI), виртуальный прибор (ВП).

 

Makhov V. E., Shirobokov V. V., Emelyanov A. V., Zakutaev A. A.
STUDY OF PLENOPTICAL REGISTRATION OF LOW-CONTRAST DISTANT OBJECTS
(pp. 4-15)

Abstract. The features of detection of subtle objects by plenoptic optical-electronic systems (POES) are considered. Schemes and algorithms for generating POES images are presented to obtain information about subtle objects, taking into account the specifics of POES operation. The possibility of increasing the probability of detecting subtle objects is theoretically justified, which is confirmed by calculating ray tracing in POES. In the process of observing subtle, low-contrast samples of light objects on an external light background, the main provisions of the theoretical justification were experimentally confirmed. Taking into account the features of objects and the background, a set of algorithms for the analysis and detection of subtle objects has been formed, on the basis of which a methodology for their application and assessment of the reliability of detection of distant subtle objects has been developed. A comparative analysis of the results of detecting subtle objects by various OES is presented. The area of practical application of registration of POES of subtle objects is determined, as well as the degree of influence of various external and internal factors on the process of registration of POES of subtle objects of observation.

Keywords: optical-electronic system (OES), plenoptic OES (POES), subtle distant object, Depth of Field (DOP), algorithms for obtaining coordinate information, continuous wavelet transform (CWT), multiple-scale analysis (MRA), National Instrumenta (NI), Virtual Instrument (VI).

Рус

В. Е. Махов, В. В. Широбоков, А. В. Емельянов, А. А. Закутаев (Военно-космическая академия им. А. Ф. Можайского, Санкт-Петербург, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

V. E. Makhov, V. V. Shirobokov, A. V. Emelyanov, A. A. Zakutaev (Mozhaisky Military Space Academy, St. Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Рус

1. Ng R. Digital Light Field Photography: A Dissertation Submitted to the Department of Computer Science and the Committee Degree of Doctor of Philosophy, 2006. 187 p.
2. Пытьев Ю. П., Чуличков А. И. Методы морфологического анализа изображений. М.: Физматлит, 2010. 336 с.
3. Шанин В. И., Шанин О. В. Методы оптической согласованной фильтрации в точном приборостроении // Журнал радиоэлектроники. 2000. № 6.
4. Махов В. Е., Потапов А. И., Закутаев А. А. Принципы работы цифровых камер светового поля с массивом микролинз // Компоненты и технологии. 2018. № 1(226). С. 66 ‒ 72.
5. Махов В. Е., Петрушенко В. М., Широбоков В. В. Возможности оптической локации средствами регистрации светового поля // Труды Военно-космической академии им. А. Ф. Можайского. 2021. № S680. С. 162 ‒ 171.
6. 3D Light Field Camera Technology / Copyright © 2013 by Raytrix GmbH, Germany. URL: http://www.isolutions.com.sg/Raytrix.pdf (дата обращения: 01.02.2021).
7. Kučera Jan. Computational Photography of Light-Field camera and Application to Panoramic Photography: the Master Thesis: Study Programme: Computer Science, Software Systems Specialization: Computer Graphics. Prague, 2014. 98 p.
8. Махов В. Е., Потапов А. И., Шалдаев С. Е. Контроль геометрических параметров изделий методом светового поля // Контроль. Диагностика. 2017. № 7. С. 12 ‒ 24.
9. Пат. на изобр. RU 2760845 C1. Способ обнаружения и определения характеристик целей на основе регистрации и обработки хода лучей от объектов в наблюдаемом пространстве и устройство для его реализации / В. Е. Махов, В. В. Широбоков, А. А. Закутаев и др. Заявка № 2021103606 от 12.02.2021; опубл. 30.11.2021.
10. Грузман И. С., Киричук В. С., Киричук В. П. и др. Цифровая обработка изображений в информационных системах: учеб. пособие для вузов. Новосибирск: Изд-во НГТУ, 2000. 168 с.
11. Вест Ч. Голографическая интерферометрия: пер. с англ. М.: Мир, 1982. 504 с.
12. Полещук А. Г., Малышев А. И., Харисов А. А, Черкашин В. В. Дифракционные фильтры для управления излучением мощных лазеров // Автометрия. 1998. № 6. С. 38 – 46.
13. Allington-Smith J. Basic Principles of Integral Field Spectroscopy // New Astronomy Reviews. 2006. V. 50, No. 4‒5. P. 244 ‒ 251. DOI: 10.1016/j.newar.2006.02.024
14. Пат. Ru 2822085C1. МПК G01S17/06. Способ получения четырехмерных яркостно-спектральных профилей удаленных объектов и устройство для его реализации / В. Е. Махов, В. В. Широбоков, А. А. Закутаев и др. Заявл. 7.11.2023; опубл. 1.7.2024.
15. Bok Y., Jeon H.-G., Kweon I. S. Geometric Calibration of Micro-Lens-Based Light-Field Cameras Using Line Features // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017. V. 39, Is. 2. P. 287 – 300.
16. Семенова О. Р. Матричная оптика / Пермский государственный национальный исследовательский университет. Пермь, 2022. 224 с.
17. Dansereau D. G., Pizarro O., Williams S. B. Decoding, Calibration and Rectification for Lenselet-Based Plenoptic Cameras // IEEE Conference on Computer Vision and Pattern Recognition. 2013. Р. 1027 – 1034.
18. Махов В. Е., Потапов А. И. Выделение информационных полей формы и дефектов поверхности методом регистрации светового поля // Контроль. Диагностика. 2018. № 3. С. 28 ‒ 38.
19. Жиличкин А. Г., Кучумов А. А., Чиров Д. С. О вероятности дешифрирования трехшпальных мир // Наукоемкие технологии в космических исследованиях Земли. 2020 Т. 12, № 3 С. 4 – 12. DOI: 10.36724/2409-5419-2020-12-3-4-12
20. Горбачёв А. А., Коротаев В. В., Ярышев С. Н. Твердотельные матричные фотопреобразователи и камеры на их основе. СПб.: НИУ ИТМО, 2013. 98 с.
21. Пустынский И. Н., Зайцева Е. В. К расчету освещенности изображения и числа сигнальных электронов в телевизионном датчике на ПЗС-матрице // Доклады ТУСУРа. 2009. № 2(20). С. 5 – 10.
22. Рабош Е.В., Аникушин Д. А., Петров Н. В. и др. Построение 3D-модели изображения объемной отражательной голограммы методом фотограмметрии // Научно-технический вестник информационных технологий, механики и оптики. 2019. Т. 19, № 6. С. 1013 – 1021.
23. Realtime Plenoptic Metrology Software. URL: https://raytrix.de/downloads/ (дата обращения: 01.02.2021)
24. Махов В. Е., Петрушенко В. М., Емельянов А. В. и др. Технология разработки алгоритмов программного обеспечения оптико-электронных систем наблюдения за удаленными объектами // Вестник компьютерных и информационных технологий. 2021. Т. 18, № 10(208). С. 10 ‒ 21.
25. Махов В. Е., Широбоков В. В., Емельянов А. В., Потапов А. И. Исследование алгоритмов определения параметров удаленных объектов в оптико-электронной системе методом вейвлет-преобразований // Контроль. Диагностика. 2022. Т. 25, № 4. С. 20 – 31 DOI: 10.14489/td.2022.04.pp.020-031
26. Харитонова Е. Н. Математическая модель выходного сигнала и геометрического шума матричных фотоприемных устройств, учитывающая нелинейность характеристики чувствительности пикселей // Вестник поморского университета. Сер. Естественные науки. 2010. № 1. С. 117 ‒ 122.
27. Махов В. Е., Широбоков В. В., Емельянов А. В., Потапов А. И. Исследование оптико-электронной системы регистрации малоразмерных и малозаметных объектов в условиях влияния геометрического шума матричного фотоприемника // Вестник компьютерных и информационных технологий. 2022. Т. 19, № 11. C. 3 – 13.
28. Чуи Ч. Введение в вэйвлеты: пер. с англ. М.: Мир, 2001. 412 с.
29. Махов В. Е., Широбоков В. В., Емельянов А. В. и др. Оптико-электронная система высокого пространственного разрешения при наблюдении за удаленными объектами // Контроль. Диагностика. 2023. Т. 26, № 1. С. 4 – 13. DOI: 10.14489/td.2023.01.pp.004-013
30. Тревис Дж., Кринг Дж. LabVIEW для всех. М.: ДМК Пресс, 2008. 880 с.
31. Визильтер Ю. В., Желтов С. Ю., Князь В. А. и др. Обработка и анализ цифровых изображений с примерами на LabVIEW IMAQ Vision. М.: ДМК Пресс, 2007. 464 с.
32. Фор А. Восприятие и распознавание образов: пер. с фр. Машиностроение, 1989. 272 с.
33. Махов В. Е., Широбоков В. В., Емельянов А. В., Петрушенко В. М. Методика оценивания эффективности оптико-электронных систем наблюдения за удаленными малоразмерными малозаметными объектами // Контроль. Диагностика. 2023. Т. 26, № 11. С. 15 – 28. DOI: 10.14489/td.2023.11.pp.015-028
34. Махов В. Е., Широбоков В. В., Емельянов А. В. Методика оценивания эффективности функционирования оптико-электронных систем при наблюдении за удаленными объектами // Контроль. Диагностика. 2024. Т. 27, № 3. С. 42 – 49. DOI: 10.14489/td.2024.03.pp.042-049

Eng

1. Ng R. (2006). Digital Light Field Photography: A Dissertation Submitted to the Department of Computer Science and the Committee Degree of Doctor of Philosophy.
2. Pyt'ev Yu. P., Chulichkov A. I. (2010). Methods of morphological analysis of images. Moscow: Fizmatlit. [in Russian language]
3. Shanin V. I., Shanin O. V. (2000). Methods of optical matched filtering in precision instrumentation. Zhurnal radioelektroniki, (6). [in Russian language]
4. Makhov V. E., Potapov A. I., Zakutaev A. A. (2018). Operating principles of digital light field cameras with microlens arrays. Komponenty i tekhnologii, 226(1), 66 ‒ 72. [in Russian language]
5. Makhov V. E., Petrushenko V. M., Shirobokov V. V. (2021). Possibilities of optical location by means of light field registration. Trudy Voenno-kosmicheskoy akademii im. A. F. Mozhayskogo, S680, 162 ‒ 171. [in Russian language]
6. 3D Light Field Camera Technology. Copyright © 2013 by Raytrix GmbH. Retrieved from http://www.isolutions.com.sg/Raytrix.pdf (Accessed: 01.02.2021).
7. Kučera Jan. (2014). Computational Photography of Light-Field camera and Application to Panoramic Photography: the Master Thesis: Study Programme: Computer Science, Software Systems Specialization: Computer Graphics. Prague.
8. Makhov V. E., Potapov A. I., Shaldaev S. E. (2017). Control of the image function optoelectronic system conversion method in image contrast. Kontrol'. Diagnostika, (7), 12 ‒ 24. [in Russian language]. DOI: 10.14489/td.2017.07.pp.012-024
9. Makhov V. E., Shirobokov V. V., Zakutaev A. A. et al. (2021). A method for detecting and determining the characteristics of targets based on recording and processing the path of rays from objects in the observed space and a device for its implementation. Patent for invention No. RU 2760845 C1. [in Russian language]
10. Gruzman I. S., Kirichuk V. S., Kirichuk V. P. et al. (2000). Digital image processing in information systems: a textbook for universities. Novosibirsk: Izdatel'stvo NGTU. [in Russian language]
11. Vest Ch. (1982). Holographic interferometry. Moscow: Mir. [in Russian language]
12. Poleshchuk A. G., Malyshev A. I., KHarisov A. A, Cherkashin V. V. (1998). Diffraction filters for controlling the radiation of high-power lasers. Avtometriya, (6), 38 – 46. [in Russian language]
13. Allington-Smith J. (2006). Basic Principles of Integral Field Spectroscopy. New Astronomy Reviews, 50(4‒5), 244 ‒ 251. DOI: 10.1016/j.newar.2006.02.024
14. Mahov V. E., Shirobokov V. V., Zakutaev A. A. et al. A method for obtaining four-dimensional brightness-spectral profiles of remote objects and a device for its implementation. Ru Patent No. Ru 2822085C1. Russian Federation. [in Russian language].
15. Bok Y., Jeon H.-G., Kweon I. S. (2017). Geometric Calibration of Micro-Lens-Based Light-Field Cameras Using Line Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(2), 287 – 300.
16. Semenova O. R. (2022). Matrix optics. Perm': Permskiy gosudarstvenniy natsional'niy issledovatel'skiy universitet. [in Russian language]
17. Dansereau D. G., Pizarro O., Williams S. B. (2013). Decoding, Calibration and Rectification for Lenselet-Based Plenoptic Cameras. IEEE Conference on Computer Vision and Pattern Recognition, 1027 – 1034.
18. Makhov V. E., Potapov A. I. (2018). Selection of information fields forms and defects of the surface by the method of registration light field. Kontrol'. Diagnostika, (3), 28 ‒ 38. [in Russian language]. DOI: 10.14489/td.2018.03.pp.028-038
19. Zhilichkin A. G., Kuchumov A. A., Chirov D. S. (2020). On the probability of deciphering three-sleeper worlds. Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli, 12(3), 4 – 12. [in Russian language]. DOI: 10.36724/2409-5419-2020-12-3-4-12
20. Gorbachyov A. A., Korotaev V. V., Yaryshev S. N. (2013). Solid-state matrix photoconverters and cameras based on them. Saint Petersburg: NIU ITMO. [in Russian language]
21. Pustynskiy I. N., Zaytseva E. V. (2009). Towards the calculation of image illumination and the number of signal electrons in a television sensor on a CCD matrix. Doklady TUSURa, 20(2), 5 – 10. [in Russian language]
22. Rabosh E.V., Anikushin D. A., Petrov N. V. et al. (2019). Construction of a 3D model of a volumetric reflection hologram image using the photogrammetry method. Nauchno-tekhnicheskiy vestnik informatsionnykh technologiy, mekhaniki i optiki, 19(6), 1013 – 1021. [in Russian language]
23. Realtime Plenoptic Metrology Software. Retrieved from https://raytrix.de/downloads/ (Accessed: 01.02.2021)
24. Makhov V. E., Petrushenko V. M., Emel'yanov A. V. et al. (2021). Technology for developing software algorithms for optical-electronic surveillance systems for remote objects. Vestnik komp'yuternykh i informatsionnykh tekhnologiy, Vol. 18 208(10), 10 ‒ 21. [in Russian language]
25. Makhov V. E., Shirobokov V. V., Emel'yanov A. V., Potapov A. I. (2022). Investigation of algorithms of detecting of the characteristics of remote objects in optoelectronic systems by the method of wavelet transformation. Kontrol'. Diagnostika, 25(4), 20 – 31. [in Russian language]. DOI: 10.14489/td.2022.04.pp.020-031
26. Haritonova E. N. (2010). Mathematical model of the output signal and geometric noise of matrix photodetector devices, taking into account the nonlinearity of the pixel sensitivity characteristics. Vestnik pomorskogo universiteta. Seriya: Estestvennye nauki, (1), 117 ‒ 122. [in Russian language]
27. Makhov V. E., Shirobokov V. V., Emel'yanov A. V., Potapov A. I. (2022). Investigation of an optoelectronic system for detecting small-sized and inconspicuous objectsunder the influence of geometric noise of a matrix photodetector. Vestnik komp'yuternykh i informatsionnykh tekhnologiy, 19(11), 3 – 13. [in Russian language]. DOI: 10.14489/vkit.2022.11.pp.003-013
28. Chui Ch. (2001). Introduction to wavelets. Moscow: Mir. [in Russian language]
29. Makhov V. E., Shirobokov V. V., Emel'yanov A. V. et al. (2023). Optical-electronic system of high spatial resolution when observing remote objects. Kontrol'. Diagnostika, 26(1), 4 – 13. [in Russian language]. DOI: 10.14489/td.2023.01.pp.004-013
30. Trevis Dzh., Kring Dzh. (2008). LabVIEW for everyone. Moscow: DMK Press. [in Russian language]
31. Vizil'ter Yu. V., Zheltov S. Yu., Knyaz' V. A. et al. (2007). Processing and analysis of digital images with examples on LabVIEW IMAQ Vision. Moscow: DMK Press. [in Russian language]
32. For A. (1989). Perception and pattern recognition. Mechanical Engineering. [in Russian language]
33. Makhov V. E., Shirobokov V. V., Emel'yanov A. V., Petrushenko V. M. (2023). Methodology for evaluating the effectiveness of optoelectronic systems when observing remote small-sized inconspicuous objects. Kontrol'. Diagnostika, 26(11), 15 – 28. [in Russian language]. DOI: 10.14489/td.2023.11.pp.015-028
34. Makhov V. E., Shirobokov V. V., Emel'yanov A. V. (2024). Methodology for assessing the effectiveness of the functioning of optical-electronic systems when monitoring remote objects. Kontrol'. Diagnostika, 27(3), 42 – 49. [in Russian language]. DOI: 10.14489/td.2024.03.pp.042-049

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2024.10.pp.004-015

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2024.10.pp.004-015

and fill out the  form  

 

.

 

 
Поиск
На сайте?
Сейчас на сайте находятся:
 48 гостей на сайте
Опросы
Понравился Вам сайт журнала?
 
Rambler's Top100 Яндекс цитирования