DOI: 10.14489/td.2015.011.pp.049-056
Резников В. А., Махсидов В. В., Гуляев И. Н. СОВРЕМЕННОЕ СОСТОЯНИЕ МЕТОДОВ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ МАТЕРИАЛА С ПОМОЩЬЮ ИНТЕГРИРОВАННЫХ В ЕГО СТРУКТУРУ ВОЛОКОННЫХ БРЭГГОВСКИХ РЕШЕТОК (с. 49-56)
Аннотация. Представлены результаты работ по определению деформации полимерного композиционного материала с помощью интегрированных волоконных брэгговских решеток (ВБР). Приводятся математические модели взаимосвязи регистрируемой физической величины и деформации оптоволокна с ВБР. Описываются методы температурной компенсации измерений с помощью ВБР, приводятся конструктивные схемы составных чувствительных элементов для определения осевых и поперечных деформаций и способы перехода от деформации оптоволокна к деформации материала.
Ключевые слова: волоконная брэгговская решетка, деформация, термокомпенсация, полимерный композиционный материал, встроенный контроль.
Reznikov V.A., Makhsidov V.V., Gulyaev I.N. STATE OF THE ART OF STRAIN MEASUREMENT METHODS OF POLYMER MATRIX COMPOSITE MATERIALS WITH EMBEDDED FIBRE BRAGG GRATING SENSORS (pp. 49-56)
Abstract. Of fibre optic sensors based on bragg grating (FBG) begin to be applied more often due to its advantages for measurement systems in various structures and in particular for purposes of structural health monitoring. Possibilities of using FBG in aviation structural elements are partly estimated. However, there is a number of questions about application in polymer matrix composite structures, which are necessary for structural health monitoring system. One of these questions is how to measure material and structure deformation with embedded FBG, because one of the key parameter of the material and construction damage state is a strain. In this review strain measurement of polymer matrix of composite materials such as carbon fibre reinforced plastics (CFRP) with embedded infibre bragg grating is presented. In particular a model for correlation of wavelength shift of the bragg peak including strain components and methods of thermocompensation are introduced. Furthermore, several architectures of FBG sensors for simultaneous measurement of strain components are estimated.
Keywords:
В. А. Резников, В. В. Махсидов, И. Н. Гуляев (ФГУП «Всероссийский научно-исследовательский институт авиационных материалов», Москва) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. A. Reznikov, V. V. Makhsidov, I. N. Gulyaev (FSUE “All-Russian Scientific-Research Institute of Aviation Materials”, Moscow) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Каблов Е. Н. Шестой технологический уклад // Наука и жизнь. 2010. № 4. С. 2 – 7. 2. Васильев С. А., Медведков И. О., Королев И. Г. и др. Волоконные решетки показателя преломления и их применение // Квантовая электроника. 2005. Т. 35. № 12. С. 1085 – 1103. В. А. Резников, В. В. Махсидов, И. Н. Гуляев «Современное состояние методов определения деформации материала…» 3. Takeda N. Fiber Optic Sensorbased SHM Technologies for Aerospace Applications in Japan // Proc. SPIE 6933 Smart Sensor Phenomena, Technology, Networks, and Systems. 2008. URL: http://dx.doi.org. 4. Guemes J. A., Menendez J. M. Response of Bragg Grating Fiber-optic Sensors when Embedded in Composite Laminates Compos // Sci. Technol. 2002. V. 62. P. 959 – 966. 5. Müller M. S., Buck T. C., El-Khozondar H. J., Koch A. W. Shear Strain Influence on Fiber Bragg Grating Measurement Systems // Journal of Lightwave Technology. 2009. V. 27. N 23. P. 5223 – 5229. 6. Lawrence C. M., Nelson D. V., Udd E., Bennett T. A Fiber Optic Sensor for Transverse Strain Measurement // Experimental Mechanics. 1999. V. 39. N 3. P. 202 – 209. 7. Leduc D., Lecieux Y., Morvan P.-A., Lupi C. Architecture of Optical Fiber Sensor for the Simultaneous Measurement of Axial and Radial Strains // Smart Mater. Struct. 2013. V. 22. P. 9. 8. Kollar L. P., Van Steenkiste R. J. Calculation of the Stresses and Strains in Embedded Fiber Optic Sensors // J. Compos. Mater. 1998. V. 32. P. 1647 – 1679. 9. Bertholds A., Dandliker R. Determination of the Individual Strain-optic Coefficients in Single-mode Optical Fibers // J. Lightwave Technol. 1988. V. 6. P. 17 – 20. 10. Song M. H., Lee S. B., Choi S. S., Lee B. H. Simultaneous Measurement of Temperature and Strain Using Two Fiber Bragg Gratings Embedded in a Glass Tube // Opt. Fiber Tech. 1997. N 3. P. 194 – 196. 11. Mulle M., Zitoune R., Collombet F. et al. Thermal Expansion of Carbonepoxy Laminates Measured with Embedded FBGS-Comparison with Other Experimental Techniques and Numerical Simulation // Compos. A Appl. Sci. Manufact. 2007. N 38. P. 1414 – 1424. 12. Xu M. G., Archambault J. L., Reekie L., Dakin J. P. Thermally-compensated Bending Gauge Using Surface Mounted Fiber Gratings // Int. J. Optoelectron. 1994. V. 9. P. 281 – 283. 13. Jin L., Zhang W. G., Zhang H. et al. An Embedded FBG Sensor for Simultaneous Measurement of Stress and Temperature // IEEE Photon. Tech. Lett. 2006. N 18. P. 154 – 156. 14. Yoon H. J., Costantini D. M., Limberger H. G. et al. In Situ Strain and Temperature Monitoring of Adaptive Composite Materials // J. Intell. Mater. Syst. Struct. 2006. N 17. P. 1059 – 1067. 15. Cavaleiro P. M., Araújo F. M., Ferreira L. A. et al. Simultaneous Measurement of Strain and Temperature Using Bragg Gratings Written in Germanosilicate and Boron-Codoped Germanosilicate Fibers // IEEE Photon. Tech. Lett. 1999. V. 11. N 12. P. 1635 – 1637. 16. Wei-Chong Du, Xiao-Ming Tao, Hwa-Yaw Tam. Fiber Bragg Grating Cavity Sensor for Simultaneous Measurement of Strain and Temperature // IEEE photonics technology letters. 1999. V. 11. N 1. P. 105 – 107. 17. Triollet S., Robert L., Marin E., Ouerdane Y. Discriminated Measures of Strain and Temperature in Metallic Specimen with Embedded Superimposed Long and Short Fibre Bragg Gratings // Meas. Sci. and Tech. 2011. V. 22. N 1. doi:10.1088/0957-0233/22/1/015202. 18. Ilda Abe, Hypolito J. Kalinowski, Orlando Frazão et al. Superimposed Bragg Gratings in High-Birefringence Fibre Optics: Three-parameter Simultaneous Measurements // Meas. Sci. Technol. 2004. V. 15. P. 1453 – 1457. 19. Echevarría J., Quintela A., Jáuregui C., López-Higuera J. M. Uniform Fiber Bragg Grating First- and Second-Order Diffraction Wavelength Experimental Characterization for Strain-Temperature Discrimination // IEEE Photonics Technology Letters. 2001. V. 13. N 7. P. 696 – 698. 20. Matrat J., Levin K., Jarlås R. Implementation of a Bragg Grating Strain Rosette Embedded in Composites Smart Structures and Materials // Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials. 2001. V. 4328. P. 168 – 179. 21. Luyckx G. Multi-axial Strain Monitoring of Fibre Reinforced Thermosetting Plastics Using Embedded Highly Birefringent Optical Fibre Bragg Sensors // PhD Dissertation Department of Materials Science and Engineering, Ghent University, 2009–2010. 22. Kehrli M., Tosin P., Luthy W., Weber H. P. Manufacture of Fibres with Multiple Claddings // Laser Phys. 2000. V. 10. P. 458 – 460. 23. Fleming J. W., Wood D. L. Refractive Index Dispersion and Related Properties in Fluorine Doped Silica // Appl. Opt. 1983. V. 22. P. 3102 – 3104. 24. Mashinsky V. M., Neustruev V. B., Dvoyrin V. V. et al. Germania-glass-core Silica-glass-cladding Modified Chemicalvapor Deposition Optical Fibers: Optical Losses, Photorefractivity, and Raman Amplification // Optics Lett. 2004. V. 29. P. 2596 – 2598. 25. Triollet S., Robert L., Marin E., Ouerdane Y. Discriminated Measures of Strain and Temperature in Metallic Specimen with Embedded Superimposed Long and Short Fibre Bragg Gratings // Meas. Sci. and Tech. 2011. V. 22. N 1. doi:10.1088/0957-0233/22/1/015202. 26. Hao Chi, Xiao-Ming Tao, Dong-Xiao Yang. Simultaneous Measurement of Axial Strain, Temperature, and Transverse Load by a Superstructure Fiber Grating // Optics letters. 2001. V. 26. N 24. P. 1949 – 1951. 27. Luyckx G., Voet E., De Waele W., Degrieck J. Multi-axial Strain Transfer from Laminated CFRP Composites to Embedded Bragg Sensor: I. Parametric Study // Smart Mater. Struct. 2010. V. 19. 9 p. 28. Voet E., Luyckx G., De Waele W., Degrieck J. Multi-axial Strain Transfer from Laminated CFRP Composites to Embedded Bragg Sensor: II. Experimental Validation // Smart Mater. Struct. 2010. V. 19. 9 p. 29. Udd E., Schulz W.L., Seim J. M. Measurement of Multidimensional Strain Fields Using Fiber Grating Sensors for Structural Monitoring // Part of the SPIE Conference on Fiber Qptic Sensor Technology and Applications. Boston. 1999. V. 3860. P. 24 – 34. 30. Tadamichi Mawatari, Drew Nelson. A Multiparameter Bragg Grating Fiber Optic Sensor and Triaxial Strain Measurement // Smart Mater. Struct. 2008. V. 17. 19 p.
1. Kablov E. N. (2010). The sixth technological structure. Nauka i zhizn', (4), pp. 2-7. 2. Vasil'ev S. A., Medvedkov I. O., Korolev I. G. et al. (2005). Fiber gratings of refraction index and their applications. Kvantovaia elektronika. 35(12), pp. 1085-1103. 3. Takeda N. (2008). Fiber optic sensorbased SHM technologies for aerospace Applications in Japan. Proc. SPIE 6933 Smart Sensor Phenomena, Technology, Networks, and Systems. doi: http://dx.doi.org/10.1117/12.776838 4. Guemes J. A., Menendez J. M. (2002). Response of Bragg grating fiberoptic sensors when embedded in composite laminates compos. Sci. Technol. 62, pp. 959-966. 5. Müller M. S., Buck T. C., El-Khozondar H. J., Koch A. W. (2009). Shear strain influence on fiber Bragg grating measurement systems. Journal of Lightwave Technology. 27(23), pp. 5223-5229. doi: 10.1109/JLT.2009.2028244 6. Lawrence C. M., Nelson D. V., Udd E., Bennett T. (1999). A fiber optic sensor for transverse strain measurement. Experimental Mechanics. 39(3), pp. 202-209. doi: 10.1007/BF02323553 7. Leduc D., Lecieux Y., Morvan P.-A., Lupi C. (2013). Architecture of optical fiber sensor for the simultaneous measurement of axial and radial strains. Smart Mater. Struct. 22, p. 9. doi: 10.1088/0964-1726/22/7/075002 8. Kollar L. P., Van Steenkiste R. J. (1998). Calculation of the stresses and strains in embedded fiber optic sensors. J. Compos. Mater. 32, pp. 1647-1679. 9. Bertholds A., Dandliker R. (1988). Determination of the individual strain-optic coefficients in single-mode optical fibers. J. Lightwave Technol, 6, pp. 17-20. 10. Song M. H., Lee S. B., Choi S. S., Lee B. H. (1997). Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube. Opt. Fiber Tech. (3), pp. 194-196. 11. Mulle M., Zitoune R., Collombet F. et al. (2007). Thermal expansion of carbonepoxy laminates measured with embedded FBGS-comparison with other experimental techniques and numerical simulation. Compos. A Appl. Sci. Manufact, (38), pp. 1414-1424. doi: 10.1016/j.compositesa. 2006.08.008 12. Xu M. G., Archambault J. L., Reekie L., Dakin J. P. (1994). Thermally-compensated bending gauge using surface mounted fiber gratings. Int. J. Optoelectron. 9, pp. 281-283. 13. Jin L., Zhang W. G., Zhang H. et al. (2006). An embedded FBG sensor for simultaneous measurement of stress and temperature. IEEE Photon. Tech. Lett., (18), pp. 154- 156. doi: 10.1109/LPT.2005.860046 14. Yoon H. J., Costantini D. M., Limberger H. G. et al. (2006). In situ strain and temperature monitoring of adaptive composite materials. J. Intell. Mater. Syst. Struct. (17), pp. 1059-1067. doi: 10.1177/1045389x06064889 15. Cavaleiro P. M., Araújo F. M., Ferreira L. A. et al. (1999). Simultaneous measurement of strain and temperature using Bragg gratings written in germanosilicate and boroncodoped germanosilicate fibers. IEEE Photon. Tech. Lett. 11(12), pp. 1635-1637. 16. Wei-Chong Du, Xiao-Ming Tao, Hwa-Yaw Tam. (1999). Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature. IEEE photonics technology letters. 11(1), pp. 105-107. doi: 10.1109/68.736409 17. Triollet S., Robert L., Marin E., Ouerdane Y. (2011). Discriminated measures of strain and temperature in metallic specimen with embedded superimposed long and short fibre Bragg gratings. Meas. Sci. and Tech. 22(1). doi:10.1088/0957-0233/22/1/015202. В. А. Резников, В. В. Махсидов, И. Н. Гуляев «Современное состояние методов определения деформации материала…» 18. Ilda Abe, Hypolito J. Kalinowski, Orlando Frazão et al. (2004). Superimposed Bragg gratings in highbirefringence fibre optics: three-parameter simultaneous measurements. Meas. Sci. Technol. 15, pp. 1453-1457. doi: 10.1088/0957-0233/15/8/003 19. Echevarría J., Quintela A., Jáuregui C., López-Higuera J. M. (2001). Uniform fiber Bragg grating first- and second-order diffraction wavelength experimental characterization for strain-temperature discrimination. IEEE Photonics Technology Letters. 13(7), pp. 696-698. doi: 10.1109/68.930418 20. Matrat J., Levin K., Jarlås R. (2001). Implementation of a Bragg grating strain rosette embedded in composites smart structures and materials. Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, 4328, pp. 168-179. 21. Luyckx G. (2009-2010). Multi-axial strain monitoring of fibre reinforced thermosetting plastics using embedded highly birefringent optical fibre Bragg sensors. PhD Dissertation Department of Materials Science and Engineering, Ghent University. 22. Kehrli M., Tosin P., Luthy W., Weber H. P. (2000). Manufacture of fibres with multiple claddings. Laser Phys. 10, pp. 458-460. 23. Fleming J. W., Wood D. L. (1983). Refractive index dispersion and related properties in fluorine doped silica. Appl. Opt., 22, pp. 3102-3104. doi: 10.1364/AO.22.003102 24. Mashinsky V. M., Neustruev V. B., Dvoyrin V. V. et al. (2004). Germania-glass-core silica-glass-cladding mod-ified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification. Optics Lett., 29, pp. 2596-2598. doi: 10.1364/OL.29.002596 25. Triollet S., Robert L., Marin E., Ouerdane Y. (2011). Discriminated measures of strain and temperature in metallic specimen with embedded superimposed long and short fibre Bragg gratings. Meas. Sci. and Tech. 22(1), doi:10.1088/0957-0233/22/1/015202. 26. Hao Chi, Xiao-Ming Tao, Dong-Xiao Yang. (2001). Simultaneous measurement of axial strain, temperature, and transverse load by a superstructure fiber grating. Optics letters. 26(24), pp. 1949-1951. doi: 10.1364/OL.26.001949 27. Luyckx G., Voet E., De Waele W., Degrieck J. (2010). Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: I. Parametric study. Smart Mater. Struct, 19. doi: 10.1088/0964-1726/19/10/105017 28. Voet E., Luyckx G., De Waele W., Degrieck J. (2010). Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: II. Experimental validation. Smart Mater. Struct, 19. doi: 10.1088/0964-1726/19/10/105018 29. Udd E., Schulz W.L., Seim J. M. (1999). Measurement of multidimensional strain fields using fiber grating sensors for structural monitoring. Part of the SPIE Conference on Fiber Qptic Sensor Technology and Applications. Boston. 3860, pp. 24-34. doi: 10.1117/12.372944 30. Tadamichi Mawatari, Drew Nelson. (2008). A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement. Smart Mater. Struct. 17. doi: 10.1088/0964-1726/17/3/035033
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа статьи заполните форму:
.
This article is available in electronic format (PDF).
The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please fill out the form below:
.
.
|