DOI: 10.14489/td.2022.08.pp.056-061
Агаев Ф. Г., Асадов И. Х. ОПТИМАЛЬНЫЙ КОНТРОЛЬ РЕЖИМА РАССЕЯНИЯ АЭРОЗОЛЯ, ЭМИТИРУЕМОГО ИЗ ГАЗОВЫХ ФАКЕЛОВ (c. 56-61)
Аннотация. Сформулирована задача наилучшего рассеяния аэрозоля, эмитированного из газовых факелов. Задача решена путем дальнейшего развития известной теории Sky-LOSA, разработанной для измерителя общего количества аэрозольной массы, сгенерированной в факелах. Критерием оптимизации принята возможность обнаружения минимальной аэрозольной массы в данном направлении. Показана возможность управления сжиганием газа адаптивно, когда факел генерирует минимальную аэрозольную массу. Предложен алгоритм реализации метода.
Ключевые слова: аэрозоль, факел, оптимизация, измерение, адаптивность.
Agayev F. G., Asadov I. H. OPTIMAL CONTROL OF THE AEROSOL SCATTERING MODE EMITTED FROM GAS FLARES (pp. 56-61)
Abstract. The problem of the best dispersion of aerosol emitted from gas flares is formulated. The problem is solved by further developing the wellknown Sky-LOSA theory developed for measuring the total amount of aerosol mass generated in flares. The optimization criterion is the possibility of detecting the minimum aerosol mass in this direction. The possibility of controlling gas combustion adaptively when the torch generates a minimum aerosol mass is shown. An algorithm for implementing the method is proposed.
Keywords: aerosol, torch, optimization, measurement, adaptability.
Ф. Г. Агаев, И. Х. Асадов (Национальное аэрокосмическое агентство, Баку, Азербайджанская Республика) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
F. G. Agayev, I. H. Asadov (National Aerospace Agency, Baku, Republic of Azerbaijan) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Способы утилизации попутного нефтяного газа в России. URL: htthps://www.sibur.ru/upload/iblock/7f9/7f99b71b46a22dd0c4769d35596e3413.pdf 2. Об особенностях исчисления платы за негативное воздействие на окружающую среду при выбросах в атмосферный воздух загрязняющих веществ, образующихся при сжигании на факельных установках и (или) рассеивании попутного нефтяного газа: Постановление Правительства Российской Федерации от 8 ноября 2012 г. № 1148. URL: https://docs.cntd.ru/document/902379207 3. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух / Научно-исследовательский институт охраны атмосферного воздуха (НИИ Атмосфера) Федеральной службы по экологическому, технологическому и атомному надзору. URL: https://files.stroyinf.ru/Index1/46/46202.htm 4. Методика расчета параметров выбросов и валовых выбросов вредных веществ от факельных установок сжигания углеводородных смесей. URL: https://online.zakon.kz/Document/?doc_id=30198720 5. Elvidge C., Ziskin D., Baugh K. et al. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data // Energies. 2009. V. 2. P. 595 – 622. 6. Solomon S., Qin D., Manning M. et al. Climate Change 2007: The physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2007. 7. Ramanathan V., Carmichael G. Global and Regional Climate Changes Due to Black Carbon // Nat. Geosci. 2008. V. 1. P. 221 – 227. 8. McDaniel M. Flare efficiency study: EPA-600/2-83-052.Washington, DC: Environmental Protection Agency, 1983. 134 p. 9. Pohl J., Lee J., Payne R., Tichenor B. Combustion Efficiency of Flares // Combust. Sci. Technol. 1986. V. 50, No. 4-6. P. 217 – 231. 10. Johnson M. R., Devillers R. W., Thomson K. A. Quantitative Field Measurement of Soot Emission from a Large Gas Flare Using Sky-LOSA // Environ. Sci. Technol. 2011. V. 45, No. 1. P. 345 – 350. 11. McEwen J. D., Johnson M. R., Thomson K. A. Experimental Measurements of PM2.5. Emission Factors from Lab-Scale Flares // Proc. of the Air & Waste Managements Association 103rd Annual Conference & Exhibition, Calgary, AB. 22 – 25 June 2010. Calgary, 2010. 12. U. S. Environmental protection Agency. Method 9: Visual Determination of the Opacity of Emission from Stationary Sources // Code of Federal Regulations. Pt 60. Title 40. 1991. 13. Weir A., Jones D., Papay L. et al. Factors Influencing Plume Opacity // Environ. Sci. Technol. 1976. V. 10. P. 539 – 544. 14. McFarland M., Terry S., Calidonna M. et al. Measuring Visual Opacity Using Digital Imaging Technology // J. Air Waste Manage. Assoc. 2004. V. 54, No. 3. P. 296 – 306. 15. Conrad B. M., Johnson M. R. Field Measurements of Black Carbon Yields from Gas Flaring // Environ. Sci. Technol. 2017. V. 51, No. 3. P. 1893 – 1900. DOI: 10.1021/acs.est.6b03690. 16. Johnson M. R., Devillers R. W., Thomson K. A. A Generalized Sky-LOSA Method to Quantify Soot/black Carbon Emission Rates in Atmospheric Plumes of Gas Flares // Aerosol Science and Technology. 2013. V. 47. P. 1017 – 1029. 17. Deetz K., Vogel B. Development of a New Gas-Flaring Emission Dataset for southern West Africa // Geosci. Model. Dev. 2017. V. 10. P. 1607 – 1620. URL: www.geosci-model-dev.net/10/1607/2017/ 18. Эльсгольц Л. Э. Дифференциальные уравнения и вариационное исчисление. М.: Наука, 1974. 432 c.
1. Methods for utilization of associated petroleum gas in Russia. Available at: htthps://www.sibur.ru/upload/iblock/7f9/7f99b71b46a22dd0c4769d35596e3413.pdf [in Russian language] 2. On the peculiarities of calculating fees for the negative impact on the environment in case of emissions of pollutants into the atmospheric air resulting from flaring and (or) dispersion of associated petroleum gas. (2012). Available at: https://docs.cntd.ru/document/902379207 [in Russian language] 3. Guidelines for the calculation, standardization and control of emissions of pollutants into the atmospheric air. Research Institute for Atmospheric Air Protection (NII Atmosfera) of the Federal Service for Ecological, Technological and Nuclear Supervision. Available at: https://files. stroyinf.ru/Index1/46/46202.htm [in Russian language] 4. Methodology for calculating the parameters of emissions and gross emissions of harmful substances from flare installations for the combustion of hydrocarbon mixtures. Available at: https://online.zakon.kz/Document/?doc_id=30198720 [in Russian language] 5. Elvidge C., Ziskin D., Baugh K. et al. (2009). A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data. Energies, Vol. 2, pp. 595–622. 6. Solomon S., Qin D., Manning M. et al. (2007). Climate Change 2007: The physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 7. Ramanathan V., Carmichael G. (2008). Global and Regional Climate Changes Due to Black Carbon. Nature Geoscience, Vol. 1, pp. 221 – 227. 8. McDaniel M. (1983). Flare efficiency study: EPA-600/2-83-052. Washington: Environmental Protection Agency. 9. Pohl J., Lee J., Payne R., Tichenor B. (1986). Combustion Efficiency of Flares. Combustion Science and Technology, Vol. 50, (4-6), pp. 217 – 231. 10. Johnson M. R., Devillers R. W., Thomson K. A. (2011). Quantitative Field Measurement of Soot Emission from a Large Gas Flare Using Sky-LOSA. Environmental Science & Technology, Vol. 45, (1), pp. 345 – 350. 11. McEwen J. D., Johnson M. R., Thomson K. A. (2010). Experimental Measurements of PM2.5. Emission Factors from Lab-Scale Flares. Proceedings of the Air & Waste Managements Association 103rd Annual Conference & Exhibition. Calgary. 12. U. S. Environmental protection Agency. Method 9: Visual Determination of the Opacity of Emission from Stationary Sources. (1991). Code of Federal Regulations. Part 60. Title 40. 13. Weir A., Jones D., Papay L. et al. (1976). Factors Influencing Plume Opacity. Environmental Science & Technology, Vol. 10, pp. 539 – 544. 14. McFarland M., Terry S., Calidonna M. et al. (2004). Measuring Visual Opacity Using Digital Imaging Technology. Journal of the Air & Waste Management Association, Vol. 54, (3), pp. 296 – 306. 15. Conrad B. M., Johnson M. R. (2017). Field Measurements of Black Carbon Yields from Gas Flaring. Environmental Science & Technology, Vol. 51, (3), pp. 1893 – 1900. DOI: 10.1021/acs.est.6b03690. 16. Johnson M. R., Devillers R. W., Thomson K. A. (2013). A Generalized Sky-LOSA Method to Quantify Soot/black Carbon Emission Rates in Atmospheric Plumes of Gas Flares. Aerosol Science and Technology, Vol. 47, pp. 1017 – 1029. 17. Deetz K., Vogel B. (2017). Development of a New Gas-Flaring Emission Dataset for southern West Africa. Geoscientific Model Development, Vol. 10, pp. 1607 – 1620. Available at: www.geosci-model-dev.net/10/1607/2017/ 18. El'sgol'ts L. E. (1974). Differential Equations and Variational Calculus. Moscow: Nauka. [in Russian language]
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа скопируйте doi статьи:
10.14489/td.2022.08.pp.056-061
и заполните форму
Отправляя форму вы даете согласие на обработку персональных данных.
.
This article is available in electronic format (PDF).
The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2022.08.pp.056-061
and fill out the form
.
|