DOI: 10.14489/td.2024.11.pp.034-044
Егоров А. С., Балабанов П. В., Дивин А. Г., Юдаев В. А., Сенкевич С. А. ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНАЯ СИСТЕМА ДЛЯ НЕРАЗРУШАЮЩЕГО ГИПЕРСПЕКТРАЛЬНОГО КОНТРОЛЯ И ДИАГНОСТИКИ СОСТОЯНИЯ КУЛЬТУРНЫХ РАСТЕНИЙ (с. 34-44)
Аннотация. Представлена информационно-измерительная система дистанционного и проксимального зондирования сельскохозяйственных культур. Показан пример ее применения в яблоневом саду интенсивного типа. Использован метод гиперспектральной визуализации в диапазоне от 350 до 1000 нм дефектов, вызванных фитозаболеваниями и вредителями. Зондирование осуществляется посредством разработанной системы, установленной на беспилотном авиационном средстве мультироторного типа. Диагностика состояния растений осуществляется в два этапа. На первом осуществляют дистанционное зондирование с высоты 10…15 м, направленное на определение координат проблемных участков сада или отдельных деревьев, потенциально пораженных фитозаболеваниями. На втором этапе осуществляют проксимальное зондирование с высоты до 1 м над объектом контроля, направленное на определение типа заболевания. Приведено описание технического, информационного и методического обеспечения системы. Показаны примеры математической обработки гиперспектральных изображений плодов яблони трех помологических сортов, применения PCA-анализа для определения длин волн, использованных в качестве независимых переменных при построении дискриминантных моделей для классификации растительных тканей яблок с точностью до 90 %.
Ключевые слова: неразрушающий гиперспектральный контроль, фитозаболевания, диагностика культурных растений, проксимальное зондирование, дистанционное зондирование, гиперспектральные изображения плодов яблони, PCA-анализ, классификация растительных тканей.
Egorov A. S., Balabanov P. V., Divin A. G., Iudaev V. A., Senkevich S. A. INFORMATION AND MEASUREMENT SYSTEM FOR NON-DESTRUCTIVE HYPERSPECTRAL CONTROL AND DIAGNOSTICS OF THE CONDITION OF CULTIVATED PLANTS (pp. 34-44)
Abstract. An information and measurement system for remote and proximal sensing of agricultural crops is presented. An example of its application in an intensive apple orchard is shown. The method of hyperspectral imaging in the range from 350 to 1000 nm of defects caused by phyto-diseases and pests was used. The sensing is carried out using a developed system installed on an unmanned multirotor aircraft. Diagnostics of the condition of plants is carried out in two stages. At the first stage, remote sensing is carried out from the height of 10... 15 m, aimed at determining the coordinates of problematic areas of the garden or individual trees potentially affected by phyto-diseases. At the second stage, proximal sensing is performed from a height of up to 1 m above the object of control, aimed at determining the type of disease. The description of the technical, informational and methodological support of the system is given. Examples of mathematical processing of hyperspectral images of apple fruits of three pomological varieties, the use of PCA analysis to determine the wavelengths used as independent variables in the construction of discriminant models for the classification of apple plant tissues with an accuracy of up to 90 % are shown.
Keywords: non-destructive hyperspectral control, phytodiseases, diagnostics of cultivated plants, proximal sensing, remote sensing, hyperspectral images of apple fruits, PCA analysis, classification of plant tissues.
А. С. Егоров, П. В. Балабанов, А. Г. Дивин, В. А. Юдаев, С. А. Сенкевич (ФГБОУ ВО «Тамбовский государственный технический университет», Тамбов, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. S. Egorov, P. V. Balabanov, A. G. Divin, V. A. Iudaev, S. A. Senkevich (Tambov State Technical University, Tambov, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Solovchenko A., Dorokhov A., Shurygin B., et al. Linking Tissue Damage to Hyperspectral Reflectance for Non-Invasive Monitoring of Apple Fruit in Orchards // Plants. 2021. V. 10, No. 2. P. 310. DOI: 10.3390/plants10020310 2. Mehl P. M., Chen Y. R., Kim M. S., Chan D. E. Development of Hyperspectral Imaging Technique for the Detection of Apple Surface Defects and Contamina-tions // J. Food Eng. 2004. V. 61, No. 1 SPEC. P. 67 ‒ 81. DOI: 10.1016/S0260-8774(03)00188-2 3. Lee W. H., Kim M. S., Lee H., et al. Hyperspectral Near-Infrared Imaging for the Detection of Physical Damages of Pear // J. Food Eng. 2014. V. 130. DOI: 10.1016/j.jfoodeng.2013.12.032 4. ElMasry G., Wang N., Vigneault C. Detecting Chilling Injury in Red Delicious apple Using Hyperspectral Imaging and Neural Networks // Postharvest Biol. Technol. 2009. V. 52, No. 1. 8 p. DOI: 10.1016/j.postharvbio.2008.11.008 5. Mathew. T., Manickavasagan A., Ravikanth L., Jayas D. S. Near Infrared (NIR) Hyperspectral Imaging to Classify Fungal Infected Date Fruits // J. Stored Prod. Res., 2014. V. 59, No. 1. DOI: 10.1016/j.jspr.2014.09.005 6. Li X., Liu Y., Jiang X., Wang G. Supervised Classification of Slightly Bruised Peaches With Respect to the Time After Bruising by Using Hyperspectral Imaging Technology // Infrared Phys. Technol. 2020. V. 113. No. 6. DOI: 10.1016/j.infrared.2020.103557 7. Li J., Chen L., Huang W., et al. Multispectral Detection of Skin Defects of Bi-Colored Peaches Based on Vis-NIR Hyperspectral Imaging // Postharvest Biol. Technol. 2016. V. 112. P. 121 ‒ 133. DOI: 10.1016/j.postharvbio.2015.10.007 8. Ramirez-Atencia C., Camacho D. Extending QGroundControl for Automated Mission Planning of Uavs // Sensors. 2018. V. 18, No. 7. P. 2339. DOI: 10.3390/s18072339 9. Balabanov P. V., Divin A. G., Egorov A. S., et al. Detection of Defects on Apples Using Hyperspectral Reflection Visualization Combining Both Vegetation Index Analysis and Neural Network // Journal of Physics: Confer-ence Series. 2020. V. 1515, No. 3. DOI: 10.1088/1742-6596/1515/3/032064 10. Huang W., Li J., Wang Q., Chen L. Development of a Multispectral Imaging System for Online Detection of Bruises on Apples // J. Food Eng. 2015. V. 146. P. 62 ‒ 71. DOI: 10.1016/j.jfoodeng.2014.09.002 11. Jarolmasjed S., Khot L. R., Sankaran S. Hyperspectral Imaging and Spectrometry-Derived Spectral Features for Bitter Pit Detection in Storage Apples // Sensors. 2018. V. 18, No. 5. P. 1561. DOI: 10.3390/s18051561 12. Xie C., Yang C., He Y. Hyperspectral Imaging for Classification of Healthy and Gray Mold Diseased Tomato Leaves With Different Infection Severities // Comput. Electron. Agric. 2017. V. 135. 154 ‒ 162. DOI: 10.1016/j.compag.2016.12.015 13. Lu B., He Y., Dao P. D. Comparing the Performance of Multispectral and Hyperspectral Images for Esti-mating Vegetation Properties // IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019. V. 12, No. 6. P. 1784 ‒ 1797. DOI: 10.1109/JSTARS.2019.2910558 14. Hao J., Ho T. K. Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language // Journal of Educational and Behavioral Statistics. 2019. V. 44, No. 3. DOI: 10.3102/1076998619832248 15. Press S. J., Wilson S. Choosing Between Logistic Regression and Discriminant Analysis // J. Am. Stat. Assoc. 1978. V. 73, No. 364. P. 699 ‒ 705. DOI: 10.1080/01621459.1978.10480080 16. Araveeporn A. Comparison of Logistic Regression and Discriminant Analysis for Classification of Multicollinearity Data // WSEAS Trans. Math. 2023. V. 22. P. 120 ‒ 131. DOI: 10.37394/23206.2023.22.15 17. Zhiqiang W., Muromtses D., Ushakov I., et al. A System for the Direct Monitoring of Biological Objects in an Ecologically Balanced Zone // Drones. 2023. V. 7, No. 1. P. 33. DOI: 10.3390/drones7010033
1. Solovchenko A., Dorokhov A., Shurygin B. et al. (2021). Linking Tissue Damage to Hyperspectral Reflectance for Non-Invasive Monitoring of Apple Fruit in Orchards. Plants, 10(2). DOI: 10.3390/plants10020310 2. Mehl P. M., Chen Y. R., Kim M. S., Chan D. E. (2004). Development of Hyperspectral Imaging Technique for the Detection of Apple Surface Defects and Contamina-tions. Journal of Food Engineering, 61(1), 67 ‒ 81. DOI: 10.1016/S0260-8774(03)00188-2 3. Lee W. H., Kim M. S., Lee H. et al. (2014). Hyperspectral Near-Infrared Imaging for the Detection of Physical Damages of Pear. Journal of Food Engineering, 130. DOI: 10.1016/j.jfoodeng.2013.12.032 4. ElMasry G., Wang N., Vigneault C. (2009). Detect-ing Chilling Injury in Red Delicious apple Using Hyperspectral Imaging and Neural Networks. Postharvest Biology and Technology, 52(1). DOI: 10.1016/j.postharvbio.2008.11.008 5. Mathew. T., Manickavasagan A., Ravikanth L., Jayas D. S. (2014). Near Infrared (NIR) Hyperspectral Imaging to Classify Fungal Infected Date Fruits. Journal of Stored Products Research, 59(1). DOI: 10.1016/j.jspr.2014.09.005 6. Li X., Liu Y., Jiang X., Wang G. (2020). Supervised Classification of Slightly Bruised Peaches With Respect to the Time After Bruising by Using Hyperspectral Imaging Technology. Infrared Physics and Technology, 113(6). DOI: 10.1016/j.infrared.2020.103557 7. Li J., Chen L., Huang W. et al. (2016). Multispectral Detection of Skin Defects of Bi-Colored Peaches Based on Vis-NIR Hyperspectral Imaging. Postharvest Biology and Technology, 112, 121 ‒ 133. DOI: 10.1016/j.postharvbio. 2015.10.007 8. Ramirez-Atencia C., Camacho D. (2018). Extending QGroundControl for Automated Mission Planning of Uavs. Sensors, 18(7). DOI: 10.3390/s18072339 9. Balabanov P. V., Divin A. G., Egorov A. S. et al. (2020). Detection of Defects on Apples Using Hyperspectral Reflection Visualization Combining Both Vegetation Index Analysis and Neural Network. Journal of Physics: Confer-ence Series, 1515(3). DOI: 10.1088/1742-6596/1515/3/032064 10. Huang W., Li J., Wang Q., Chen L. (2015). Development of a Multispectral Imaging System for Online Detection of Bruises on Apples. Journal of Food Engineering, 146, 62 ‒ 71. DOI: 10.1016/j.jfoodeng.2014.09.002 11. Jarolmasjed S., Khot L. R., Sankaran S. (2018). Hyperspectral Imaging and Spectrometry-Derived Spectral Features for Bitter Pit Detection in Storage Apples. Sensors, 18(5). DOI: 10.3390/s18051561 12. Xie C., Yang C., He Y. (2017). Hyperspectral Imaging for Classification of Healthy and Gray Mold Diseased Tomato Leaves With Different Infection Severities. Comput-ers and Electronics in Agriculture, 135, 154 ‒ 162. DOI: 10.1016/j.compag.2016.12.015 13. Lu B., He Y., Dao P. D. (2019). Comparing the Performance of Multispectral and Hyperspectral Images for Estimating Vegetation Properties. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(6), 1784 ‒ 1797. DOI: 10.1109/JSTARS.2019.2910558 14. Hao J., Ho T. K. (2019). Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language. Journal of Educational and Behavioral Statistics, 44(3). DOI: 10.3102/1076998619832248 15. Press S. J., Wilson S. (1978). Choosing Between Logistic Regression and Discriminant Analysis. Journal of the American Statistical Association, Vol. 73 364, 699 ‒ 705. DOI: 10.1080/01621459.1978.10480080 16. Araveeporn A. (2023). Comparison of Logistic Regression and Discriminant Analysis for Classification of Multicollinearity Data. WSEAS Transactions on Mathemat-ics, 22, 120 ‒ 131. DOI: 10.37394/23206.2023.22.15 17. Zhiqiang W., Muromtses D., Ushakov I. et al. (2023) A System for the Direct Monitoring of Biological Objects in an Ecologically Balanced Zone. Drones, 7(1). DOI: 10.3390/drones7010033
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа скопируйте doi статьи:
10.14489/td.2024.11.pp.034-044
и заполните форму
Отправляя форму вы даете согласие на обработку персональных данных.
.
This article is available in electronic format (PDF).
The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2024.11.pp.034-044
and fill out the form
.
|