DOI: 10.14489/td.2025.01.pp.056-061
Васильев Г. С., Суржик Д. И., Кузичкин О. Р., Бакнин М. Д., Коваленко А. О. МЕТОД КАЛИБРОВКИ СИСТЕМ ГЕОЭКОЛОГИЧЕСКОГО МОНИТОРИНГА НА ОСНОВЕ ГЕОЭЛЕКТРИЧЕСКИХ МЕТОДОВ ГЕОДИНАМИЧЕСКОГО КОНТРОЛЯ с. (56-61)
Аннотация. Рассмотрены вопросы, посвященные разработке, исследованию и апробации нового метода математического моделирования и натурных испытаний систем геоэкологического мониторинга на основе геоэлектрических методов геодинамического контроля. Разрабатываемый метод предполагает создание эффекта присутствия приповерхностных и глубинных неоднородностей с помощью дополнительных точечных или протяженных источников (электродов различной формы, отрезков кабелей различной длины и формы и пр.). Проблемой известных методов физического (натурного) моделирования геоэлектрических разрезов является жесткое задание геометрических и электрических параметров, создаваемых объемных и плоскостных моделей сред. Особенность предлагаемого метода заключается в возможности гибкого изменения поля неоднородности простым перемещением дополнительных источников, что недостижимо в известных методах натурного моделирования. Проведенное математическое моделирование подтвердило высокую точность аппроксимации реальных геоэлектрических полей модельными источниками. Апробация метода для калибровки геоэлектрических систем геодинамического контроля подтвердила его эффективность при натурных испытаниях многополюсных электролокационных установок в условиях сложной застройки и воздействия промышленных и климатических помех.
Ключевые слова: геоэкологический мониторинг, геоэлектрика, геодинамический контроль, неоднородности, критерий подобия, аппроксимация.
Vasilyev G. S., Surzhik D. I., Kuzichkin O. R., Baknin M. D., Kovalenko A. O. METHOD FOR CALIBRATION OF GEOECOLOGICAL MONITORING SYSTEMS BASED ON GEOELECTRIC METHODS OF GEODYNAMIC CONTROL pp. (56-61)
Abstract. The article discusses issues related to the development, research and testing of a new method of mathematical modeling and field testing of geoecological monitoring systems based on geoelectric methods of geodynamic control. The method being developed involves creating the effect of the presence of near-surface and deep-seated inhomogeneities using additional point or extended sources (electrodes of various shapes, cable sections of various lengths and shapes, etc.). The problem with the known methods of physical (full-scale) modeling of geoelectric sections is the rigid specification of the geometric and electrical parameters of the created volumetric and planar media models. A feature of the proposed method is the ability to flexibly change the inhomogeneity field by simply moving additional sources, which is unattainable in known full-scale modeling methods. The mathematical modeling carried out confirmed the high accuracy of approximation of real geoelectric fields by model sources. The testing of the method for calibrating geoelectrical geodynamic control systems confirmed its effectiveness in full-scale testing of multipole electrolocation installations in conditions of complex buildings and exposure to industrial and climatic interference.
Keywords: geoecological monitoring, geoelectrics, geodynamic control, heterogeneity, similarity criterion, approximation.
Г. С. Васильев, Д. И. Суржик (ФГБОУ ВО «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ), Владимир, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
О. Р. Кузичкин (ФГБОУ ВО «Московский государственный технический университет им. Н. Э. Баумана», Москва, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
М. Д. Бакнин, А. О. Коваленко (ФГБОУ ВО «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (ВлГУ), Владимир, Россия) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
G. S. Vasilyev, D. I. Surzhik (Federal State Budgetary Educational Institution of Higher Education "Vladimir State University named after Alexander Grigoryevich and Nikolai Grigoryevich Stoletov" (VlSU), Vladimir, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
O. R. Kuzichkin (Bauman Moscow State Technical University, Moscow, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
M. D. Baknin, A. O. Kovalenko (Federal State Budgetary Educational Institution of Higher Education "Vladimir State University named after Alexander Grigoryevich and Nikolai Grigoryevich Stoletov" (VlSU), Vladimir, Russia) E-mail:
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
,
Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Кузичкин О. Р. Регрессионный алгоритм формирования прогнозных геомеханических оценок при геоэлектрическом мониторинге // Методы и средства передачи и обработки информации. 2008. Вып. 10. С. 83 ‒ 89. 2. Орехов А. А., Дорофеев Н. В. Геоэлектрическое моделирование приповерхностных геодинамических объектов с учетом воздействия эндогенных факторов // Алгоритмы, методы и системы обработки данных. Вып. 1 (26). Муром: Муромский институт (филиал) ВлГУ, 2014. С. 32 ‒ 40. 3. Кузичкин O. P., Кулигин М. H., Финогенов С. А. Спектральное описание элементарных геоэлектрических моделей карстовых неоднородностей // Методы и средства передачи и обработки информации. 2004. Вып. 4. С. 137 ‒ 141. 4. Цаплев А. В. Метод и средства компенсации температурных помех в системах геоэлектрического контроля: дис. ... канд. техн. наук: 05.11.13. Муром, 2011. 132 с. 5. Матвеев Б. К. Электроразведка: учеб. для вузов. 2-е изд., перераб. и доп. М.: Недра, 1990. 368 с. С. 276 ‒ 279. 6. Kramer S. L., Elgamal A. Modeling Soil Liquefaction Hazards for Performance-Based Earthquakeengineering. PEER report 2001/13 / Pacific Earthquake Engineering Research Center, College of Engineering, Univ. of California, Berkeley, 2001. 7. Jenck O., Dias D., Kastner R. Soft Ground Improvement by Vertical Rigid Piles – Two Dimensional Physical Modeling and Comparison With Current Design Methods // Soils & Foundations. 2005. V. 45, No. 6. P. 15 ‒ 30. 8. Altaee A., Fellenius B. H. Physical Modeling in Sand // Canadian Geotechnical Journal. 1994. V. 31, No. 3. P. 420 ‒ 431. 9. Wartman J. Geotechnical Physical Modeling for Education: Learning Theory Approach // Journal of Professional Issues in Engineering Education and Practice. 2006. V. 132, No. 4. P. 288 ‒ 296. 10. Кузичкин О. Р. Выделение элементарных геоэлектрических неоднородностей спектральным методом // Радиотехника, электроника, информатика. Вып. 3. Муром: Изд-во МИ ВлГУ, 2004. С. 18 ‒ 20. 11. Электроразведка методом сопротивлений: учеб. пособие / под ред. В. К. Хмелевского, В. А. Шевнина. М.: Изд-во МГУ, 1994. 194 с. 12. Бурсиан В. Р. Теория электромагнитных полей, применяемых в электроразведке. Изд-е 2, испр. и доп. Л.: Недра, 1972. 368 с. 13. Куфуд О. Зондирование методом сопротивлений: пер. с англ. М.: Недра, 1984. 270 с. С. 231 ‒ 232.
1. Kuzichkin O. R. (2008). Regression algorithm for generating predictive geomechanical estimates during geoelectric monitoring. Metody i sredstva peredachi i obrabotki informatsii, (10), 83 ‒ 89. [in Russian language] 2. Orekhov A. A., Dorofeev N. V. (2014). Geoelectric modeling of near-surface geodynamic objects taking into account the impact of endogenous factors. Algorithms, methods and data processing systems, 26(1), 32 – 40. Murom: Muromskiy institut (filial) VlGU. [in Russian language] 3. Kuzichkin O. P., Kuligin M. H., Finogenov S. A. (2004). Spectral description of elementary geoelectric models of karst heterogeneities. Methods and means of transmitting and processing information, (4), 137 ‒ 141. [in Russian language] 4. Tsaplev A. V. (2011). Method and means of compensation for temperature interference in geoelectric monitoring systems. Murom. [in Russian language] 5. Matveev B. K. (1990). Electrical prospecting: a textbook for universities. 2nd ed., 276 – 279. Moscow: Nedra. [in Russian language] 6. Kramer S. L., Elgamal A. (2001). Modeling Soil Liquefaction Hazards for Performance-Based Earthquake-engineering. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley. 7. Jenck O., Dias D., Kastner R. (2005). Soft Ground Improvement by Vertical Rigid Piles – Two Dimensional Physical Modeling and Comparison with Current Design Methods. Soils & Foundations, 45(6), 15 ‒ 30. 8. Altaee A., Fellenius B. H. (1994). Physical Modeling in Sand. Canadian Geotechnical Journal, 31(3), 420 ‒ 431. 9. Wartman J. (2006). Geotechnical Physical Modeling for Education: Learning Theory Approach. Journal of Professional Issues in Engineering Education and Practice, 132(4), 288 ‒ 296. 10. Kuzichkin O. R. (2004). Identification of elementary geoelectric heterogeneities by spectral method. Radiotekhnika, elektronika, informatika, (3), 18 – 20. Murom: Izdatel'stvo MI VlGU. [in Russian language] 11. Hmelevskiy V. K., Shevnin V. A. (Eds.) (1994). Electrical prospecting using the resistance method: textbook. Moscow: Izdatel'stvo MGU. [in Russian language] 12. Bursian V. R. (1972). Theory of electromagnetic fields used in electrical prospecting. 2nd ed. Leningrad: Nedra. [in Russian language] 13. Kufud O. (1984). Probing using the resistance method, 231 – 232. Moscow: Nedra. [in Russian language]
Статью можно приобрести в электронном виде (PDF формат).
Стоимость статьи 700 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.
После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.
Для заказа скопируйте doi статьи:
10.14489/td.2025.01.pp.056-061
и заполните форму
Отправляя форму вы даете согласие на обработку персональных данных.
.
This article is available in electronic format (PDF).
The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.
After depositing your payment on our bank account we send you file of the article by e-mail.
To order articles please copy the article doi:
10.14489/td.2025.01.pp.056-061
and fill out the form
.
|