Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Текущий номер
23 | 02 | 2025
2025, 02 февраль (February)

DOI: 10.14489/td.2025.02.pp.004-013

Сясько В. А., Мусихин А. С., Гнивуш И. С., Степанова М. С., Антонов Д. И.
АВТОМАТИЗАЦИЯ ИМПУЛЬСНОГО ЭЛЕКТРОИСКРОВОГО КОНТРОЛЯ ДИЭЛЕКТРИЧЕСКИХ ПОКРЫТИЙ МЕТАЛЛИЧЕСКИХ ТРУБ ДИАМЕТРОМ ДО 1420 ММ
(c. 4-13)

Аннотация. В настоящее время основным методом выявления дефектов сплошности диэлектрических покрытий труб в поточном производстве является электроискровой метод неразрушающего контроля. При этом в процессе контроля используются электроды, имеющие значительную площадь контроля и формирующие значительную электрическую реактивную нагрузку на генератор высокого напряжения. При этом существующие методики аттестации оборудования не устанавливают требования к электрической нагрузке при аттестации. Разработан генератор высокого импульсного напряжения повышенной мощности на основе двухкаскадного накопителя электрического заряда, рассчитаны основные параметры генератора высокого напряжения, даны рекомендации по дополнению существующих методик аттестации требованиями к эквивалентным электрическим нагрузкам, показано влияние эквивалентных электрических емкости и сопротивления системы «электрод– диэлектрическое покрытие–токопроводящее основание» на импульсное и постоянноточное испытательное напряжение метода. Рассмотренный процесс электроискрового контроля труб в полевых условиях и в условиях поточного производства показал значительную зависимость испытательного напряжения метода от нагрузочного импеданса системы «электрод–диэлектрическое покрытие–токопроводящее основание». При этом предложенное техническое решение по увеличению скорости накопления заряда в электрической емкости каскада накачки и повышению мощности трансформаторного узла позволяет обеспечивать требуемое нормативной документацией испытательное напряжение в процессе контроля. Указана необходимость аттестации электроискровых дефектоскопов на тех объектах, на которых они применяются в комплекте с используемыми электродами, что особенно актуально для систем автоматизированного контроля сплошности покрытий труб. Для случаев использования электродов повышенной емкости (с увеличенной длиной перекрытия l или диаметром контролируемых труб D от 1420 мм) предлагается использовать несколько генераторов высокого напряжения, работающих на некотором удалении друг от друга.

Ключевые слова:  сквозной дефект, дефект покрытия, электроискровой метод, покрытие, контроль сплошности, магистральный трубопровод, нанесение покрытия.

 

Syasko V. A., Musikhin A. S., Gnivush I. S., Stepanova M. S., Antonov D. I.
AUTOMATION OF PULSE ELECTROSPARK TESTING OF DIELECTRIC COATINGS OF METAL PIPES UP TO 1420 MM IN DIAMETER
(pp. 4-13)

Abstract. At present, the main method of detecting defects in the continuity of dielectric pipes coatings in in-line production is the electrospark method of non-destructive testing. In this process, electrodes with a significant control area and forming a significant electrical reactive load on the high-voltage generator are used. In this case, the existing methods of equipment certification do not establish requirements for electrical load during certification. The authors of the article developed a generator of high pulse voltage of increased power on the basis of a two-stage electric charge accumulator, calculated the main parameters of the generator of high voltage, gave recommendations for supplementing the existing methods of certification requirements for equivalent electrical loads, showed the influence of equivalent electrical capacitance and resistance of the system ‘electrode– dielectric coating–conductive base’ on the pulse and DC test voltage of the method. The process of electrospark testing of pipes under field conditions and in-line production conditions considered by the authors has shown a significant dependence of the test voltage of the method on the load impedance of the system ‘electrode–dielectric coating–conductive base’. In this case, the technical solution proposed by the authors to increase the rate of charge accumulation in the electrical capacitance of the pumping stage and increase the power of the transformer unit allow to provide the test voltage required by the normative documentation in the process of testing. The authors point out the necessity of certification of electrospark flaw detectors at those objects where they are used in a set with the electrodes used, which is especially important for the systems of automated control of pipes coatings continuity. For cases of using electrodes of increased capacity (with increased overlap length l or diameter of controlled pipes D from 1420 mm) the authors suggest using several high-voltage generators working at some distance from each other.

Keywords: through defect, coating defect, electrospark method, coating, continuity testing, trunk pipeline, coating application.

Рус

В. А. Сясько (Всероссийский научно-исследовательский институт метрологии им. Д. И. Менделеева, Санкт-Петербург, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
А. С. Мусихин (ООО «Константа», Санкт-Петербург, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
И. С. Гнивуш, М. С. Степанова (Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
Д. И. Антонов (Всероссийский научно-исследовательский институт метрологии им. Д. И. Менделеева, Санкт-Петербург, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

V. A. Syasko (All-Russian Research Institute of Metrology named after D. I. Mendeleev, St. Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. S. Musikhin (Constanta LTD, St. Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
I. S. Gnivush, M. S. Stepanova (St. Petersburg Mining University of Empress Catherine II St. Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
D. I. Antonov (All-Russian Research Institute of Metrology named after D. I. Mendeleev, St. Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Рус

1. ГОСТ 31488‒2012. Трубы стальные с защитными наружными покрытиями для магистральных газонефтепроводов. Технические условия. М.: Стандартинформ, 2012. 11 с.
2. ГОСТ 9.402–2004. Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Подготовка металлических поверхностей к окрашиванию. М.: Стандартинформ, 2006. 40 с.
3. Яковлев А. Д. Химия и технология лакокрасочных покрытий: учеб. для вузов. 4-е изд., испр. СПб.: Химиздат, 2010. 448 с.
4. ГОСТ Р51164–98. Трубопроводы стальные магистральные. Общие требования к защите от коррозии. М.: Изд-во стандартов, 1998. 46 с.
5. Райзер Ю. П. Физика газового разряда: учеб. руководство. 2-е изд. М.: Наука, 1992. 536 с.
6. Тренькин А. А., Алмазова К. И., Белоногов А. Н. и др. Исследования начальной фазы искрового разряда в воздухе в промежутке острие (катод) − плоскость методом лазерного зондирования // Журнал технической физики. 2020. Т. 90, № 12. С. 2039 ‒ 2046.
7. Базелян Э. М., Райзер Ю. П. Искровой разряд: учеб. пособие. М.: Изд-во МФТИ, 1997. 320 с.
8. Воробьев Г. А., Похолков Ю. П., Королев Ю. Д. и др. Физика диэлектриков (область сильных полей): учеб. пособие. Томск: Изд-во ТПУ, 2003. 244 с.
9. Антонов Д. И., Степанова М. С., Мусихин А. С. и др. Обеспечение достоверности автоматизированного импульсного электроискрового контроля покрытий труб в поточном производстве // Дефектоскопия. 2024. № 8. С. 71 ‒ 75.
10. ГОСТ 34395–2018. Материалы лакокрасочные. Электроискровой метод контроля сплошности диэлектрических покрытий на токопроводящих основаниях. М.: Стандартинформ, 2018. 11 с.
11. ASTMD 5162-01:2015. Standard Practice for Discontinuity (Holiday) Testing of Nonconductive Protective Coating on Metallic Substrates, 2015.
12. G62–14. Standard Test Methods for Holiday Detection in Pipeline Coatings, 2014.
13. NACE SP0188‒2006. Discontinuity (Holiday) Testing of New Protective Coatings on Conductive Substrates, 2006.
14. ASTM D6747–15. Standard Guide for Selection of Techniques for Electrical Leak Location of Leaks in Geomembranes, 2015.
15. Гаджиев Я. М., Ибрагимова Э. Н. Экспериментальное исследование измерения размеров трещин силикатно-эмалевого покрытия трубы // Дефектоскопия. 2020. № 1. С. 61 – 65.
16. Ибрагимов Н. Ю., Ибрагимова Э.Н. Дефектоскопическая установка трещиномер силикатных покрытий труб // Дефектоскопия. 2017. № 11. С. 55 ‒ 57.
17. Подмастерьев К. В., Соснин Ф. Р., Корндорф С. Ф. и др. Электрический контроль // Неразрушающий контроль: справочник: в 8 т. / под общ. ред. В. В. Клюева. Т. 5: в 2 кн. Кн. 2. 2-е изд., дораб. М.: Машиностроение, 2006. 679 с.
18. Савельев И. В. Курс общей физики: учеб. пособие для вузов: в 5 т. Т. 2. Электричество и магнетизм. 7-е изд., стер. СПб.: Лань, 2024. 344 с.
19. Holiday Detector: [Electronic resource] / Elcometer. URL: https://www.elcometer.com/en/holiday-detector (Access date: 07.10.2024)
20. Корона 2.2 [Электронный ресурс] / «Константа». URL: https://constanta.ru/catalog/korona-2-2 (Дата обращения: 07.10.2024)
21. Важов В. Ф., Лавринович В. А., Лопаткин С. А. Техника высоких напряжений: курс лекций. Томск: Изд-во ТПУ, 2006. 119 с.
22. Встовский А. Л. Электрические машины: учеб. пособие. Красноярск: СФУ, 2013. 464 с.
23. Хоровиц П., Хилл У. Искусство схемотехники: пер. с англ. 2-е изд. М.: Бином, 2014. 704 с.
24. Ерехинский Б. А. Современные технологии диагностики объектов добычи газа и газового конденсата. Применяемая техника и оборудование. Воронеж: Воронежская областная типография, 2017. 374 с.

Eng

1. Steel pipes with protective outer coatings for main gas and oil pipelines. Technical conditions. (2012). Standard No. GOST 31488‒2012. Moscow: Standartinform. [in Russian language]
2. Unified system of protection against corrosion and aging. Paint and varnish coatings. Preparing metal surfaces for painting. (2006). Standard No. GOST 9.402–2004. Moscow: Standartinform. [in Russian language]
3. Yakovlev A. D. (2010). Chemistry and technology of paint and varnish coatings: a textbook for universities. 4th ed. Saint Petersburg: Himizdat. [in Russian language]
4. Main steel pipelines. General requirements for corrosion protection. (1998). Ru Standard No. GOST R 51164–98. Moscow: Izdatel'stvo standartov. [in Russian language]
5. Rayzer Yu. P. (1992). Physics of gas discharge: textbook. 2nd ed. Moscow: Nauka. [in Russian language]
6. Tren'kin A. A., Almazova K. I., Belonogov A. N. et al. (2020). Research of the initial phase of a spark discharge in air in the gap between the tip (cathode) and the plane using laser probing. Zhurnal tekhnicheskoy fiziki, 90(12), 2039 ‒ 2046. [in Russian language]
7. Bazelyan E. M., Rayzer Yu. P. (1997). Spark discharge: textbook. Moscow: Izdatel'stvo MFTI. [in Russian language]
8. Vorob'ev G. A., Poholkov Yu. P., Korolev Yu. D. et al. (2003). Physics of dielectrics (region of strong fields): textbook. Tomsk: Izdatel'stvo TPU. [in Russian language]
9. Antonov D. I., Stepanova M. S., Musihin A. S. et al. (2024). Ensuring the reliability of automated pulse electric spark testing of pipe coatings in continuous production. Defektoskopiya, (8), 71 ‒ 75. [in Russian language]
10. Paint and varnish materials. Electric spark method for monitoring the continuity of dielectric coatings on conductive substrates. (2018). Standard No. GOST 34395–2018. Moscow: Standartinform. [in Russian language]
11. Standard Practice for Discontinuity (Holiday) Testing of Nonconductive Protective Coating on Metallic Substrates. (2015). Standard No. ASTM D 5162-01:2015.
12. Standard Test Methods for Holiday Detection in Pipeline Coatings. (2014). Standard No. ASTM G 62–14.
13. Discontinuity (Holiday) Testing of New Protective Coatings on Conductive Substrates. (2006). Standard No. NACE SP 0188‒2006.
14. Standard Guide for Selection of Techniques for Electrical Leak Location of Leaks in Geomembranes. (2015). Standard No. ASTM D 6747–15.
15. Gadzhiev Ya. M., Ibragimova E. N. (2020). Experimental study of measuring the size of cracks in a silicate-enamel pipe coating. Defektoskopiya, (1), 61 – 65. [in Russian language]
16. Ibragimov N. Yu., Ibragimova E.N. (2017). Flaw detection installation crack gauge for silicate pipe coatings. Defektoskopiya, (11), 55 ‒ 57. [in Russian language]
17. Klyuev V. V. (Ed.), Podmaster'ev K. V., Sosnin F. R., Korndorf S. F. et al. (2006). Electrical control. Non-destructive testing: handbook: in 8 volumes. Vol. 5: in 2 books. Book 2. 2nd ed. Moscow: Mashinostroenie. [in Russian language]
18. Savel'ev I. V. (2024). General physics course: textbook for universities: 5 volumes. Vol. 2. Electricity and magnetism. 7th ed. Saint Petersburg: Lan'. [in Russian language]
19. Holiday Detector. Elcometer. Retrieved from https://www.elcometer.com/en/holiday-detector (Accessed: 07.10.2024).
20. Crown 2.2. "Constant". Retrieved from https://constanta.ru/catalog/korona-2-2 (Accessed: 07.10.2024). [in Russian language]
21. Vazhov V. F., Lavrinovich V. A., Lopatkin S. A. (2006). High voltage technology: a course of lectures. Tomsk: Izdatel'stvo TPU. [in Russian language]
22. Vstovskiy A. L. (2013). Electrical machines: textbook. Krasnoyarsk: SFU. [in Russian language]
23. Horovits P., Hill U. (2014). The art of circuit design. 2nd ed. Moscow: Binom. [in Russian language]
24. Erekhinskiy B. A. (2017). Modern technologies for diagnosing gas and gas condensate production facilities. Applied technology and equipment. Voronezh: Voronezhskaya oblastnaya tipografiya. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 700 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2025.02.pp.004-013

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2025.02.pp.004-013

and fill out the  form  

 

.

 

 
Поиск
На сайте?
Сейчас на сайте находятся:
 268 гостей на сайте
Опросы
Понравился Вам сайт журнала?
 
Rambler's Top100 Яндекс цитирования