Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Текущий номер
18 | 09 | 2025
2025, 09 сентябрь (September)

DOI: 10.14489/td.2025.09.pp.056-062

Михин С. О., Ганжа В. А., Кошкур О. Н., Романов А. Е.
ТОНКОПЛЕНОЧНЫЙ СОРБЦИОННО-ЕМКОСТНОЙ СЕНСОР КОНТРОЛЯ ВЛАГОСОСТОЯНИЯ ГАЗОВЫХ СРЕД
(с. 56-62)

Аннотация. Рассматриваются создание и исследование сорбционно-емкостного сенсора контроля влагосостояния природного газа. Задачей исследования является разработка технологий, позволяющих уменьшить толщину влагочувствительного слоя и улучшить электрические характеристики сенсора. Важным аспектом стало применение метода электрохимического анодирования для формирования оксидных пленок на алюминиевых подложках, что значительно снижает тангенс угла диэлектрических потерь. В результате разработанных технологий и конструктивных решений достигнуты высокие показатели надежности сенсоров, что делает их перспективными для использования в газотранспортной системе.

Ключевые слова:  электрическая емкость, электрическое сопротивление, влагосостояние газовой среды, магнетронное напыление, электрохимическое анодирование, влагопроницаемые электроды, влагочувствительный слой, сенсор влажности, тангенс угла диэлектрических потерь.


Mikhin S. O., Ganzha V. A., Koshkur O. N., Romanov A. E.
THIN-FILM SORPTION-CAPACITIVE SENSOR FOR MONITORING THE MOISTURE CONTENT OF GASEOUS MEDIA
(pp. 56-62)

Abstract. This research focuses on the development and testing of a sorption-capacitive sensor designed for monitoring the humidity levels in natural gas. The primary objective of the study is to innovate methods that reduce the thickness of the moisture-sensitive layer while enhancing the electrical performance of the sensor. A critical aspect addressed is the application of electrochemical anodization, which facilitates the creation of oxide films on aluminum substrates. This process leads to significant reductions in the tangent of the dielectric loss angle, improving the overall efficiency of the sensor. The constructed sensor consists of a porous moisture-sensitive layer, formulated through innovative techniques, enabling it to absorb and desorb moisture optimally in varying conditions. The study also examines the performance of titanium and its nitride as permeable electrodes, asserting their robust adhesion to the sensitive layers generated via anodization. Results demonstrate that the electrical characteristics of the sensors remain stable across a dew point temperature range from +20 to ‒100 ºC, indicating low levels of hysteresis and high reliability. The findings suggest that these sensors offer considerable promise for integration into the gas transportation system, thereby contributing to the effective monitoring and management of the gas supply while addressing challenges related to moisture content that can impact system integrity. Overall, this research underscores the importance of developing domestic technologies to manufacture advanced sensors, ensuring the sustainability and reliability of Russia’s gas infrastructure.

Keywords: electrical capacity, electrical resistance, moisture content of the gaseous medium, magnetron sputtering, electrochemical anodizing, moisture-permeable electrodes, moisture-sensitive layer, humidity sensor, tangent of the dielectric loss angle.

Рус

С. О. Михин (ООО «Газпром трансгаз Томск», Сахалинское ЛПУМТ, Южно-Сахалинск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
В. А. Ганжа (ФГАОУ ВО «Сибирский федеральный университет», Красноярск, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
О. Н. Кошкур (ООО «Завод высоковольтных электронных компонентов «Прогресс», Ухта, пгт. Водный, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
А. Е. Романов (ООО «Прогресс Спецэлектроника», Санкт-Петербург, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Eng

S. O. Mikhin (Gazprom Transgaz Tomsk LLC, Sakhalin LPUMT Yuzhno-Sakhalinsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
V. A. Ganzha (Siberian Federal University, Krasnoyarsk, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
O. N. Koshkur (Progress Plant of High-voltage Electronic Components, Ukhta, village. Vodny, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
A. E. Romanov (Progress Special Electronics LLC, Saint Petersburg, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

 

Рус

1. Энергетическая стратегия Российской Федерации на период до 2050 года. Утверждена Распоряжением Правительства Российской Федерации от 12 апреля 2025 г. № 908 // static.government.ru: сайт. М., 2025. 107 с.
2. Генеральная схема развития газовой отрасли Российской Федерации на период до 2035 года. Одобрена решением Правительства Российской Федерации от 13 мая 2021 г. // minenergo.gov.ru: сайт. М., 2021. 6 с.
3. ГОСТ 20060‒2021. Газ природный. Определение температуры точки росы по воде. Введ. 01.01.2023. М.: ООО «Газпром ВНИИГАЗ», 2021. 22 с.
4. Михин С. О., Егоров Д. Н., Кошкур О. Н., Романов А. Е. Топология изготовления сорбционно-емкостного сенсора влажности на основе тонких пленок, полученных микродуговым оксидированием и магнетронным напылением // Контроль. Диагностика. 2023. Т. 26, № 10. С. 38 – 48.
5. Пат. 222946 РФ, МПК G01N 27/12. Тонкопленочный сорбционно-емкостной сенсор влажности / С. О. Михин, Д. Н. Егоров, М. О. Кошкур и др. Заявка № 2023125717; заявл. 06.10.2023; опубл. 24.01.2024, Бюл. № 3. 1 с.
6. Пат. 2820096 РФ, МПК G01N 27/12. Способ изготовления тонкопленочного сенсора влажности / С. О. Михин, Д. Н. Егоров, М. О. Кошкур и др. Заявка № 2023125716; заявл. 06.10.2023; опубл. 29.05.2024, Бюл. № 16. 1 с.
7. Анализаторы компонентов прецизионные WK6430B, WK6440B: Описание типа средства измерения № 33772-07. М.: Росстандарт, 2006. 4 с.
8. Прецизионный лабораторный анализатор влажности S4000 модификации Remote, Climatic, RS и TRS: Руководство пользователя. Версия 19. М.: ЗАО «Регуляр», 2008. 29 с.
9. Генераторы влажного газа MG100/MG101: Описание типа средства измерения № 16525-97. М.: ФГУП «ВНИИМС», 2008. 3 с.
10. ГОСТ 9293‒74 (ИСО 2435–73). Азот газообразный и жидкий. Технические условия. Введ. 01.01.1976. М.: Стандартинформ, 2007. 35 с.

Eng

1. Energy Strategy of the Russian Federation until 2050. (2025). Approved by Order of the Government of the Russian Federation No. 908 dated April 12, 2025 [in Russian language].
2. General Scheme for the Development of the Gas Industry of the Russian Federation until 2035. (2021). Approved by Decision of the Government of the Russian Federation dated May 13, 2021 [in Russian language].
3. GOST 20060-2021. Natural gas. Determination of water dew point temperature. (2021). Gazprom VNIIGAZ LLC. [in Russian language]
4. Mikhin, S. O., Egorov, D. N., Koshkur, O. N., & Romanov, A. E. (2023). Topology of manufacturing a sorption-capacitive humidity sensor based on thin films obtained by micro-arc oxidation and magnetron sputtering. Kontrol'. Diagnostika, 26(10), 38–48. [in Russian language]
5. Mikhin, S. O., Egorov, D. N., Koshkur, M. O., et al. (2024). Thin-film sorption-capacitive humidity sensor (Patent No. RU 222946). [in Russian language]
6. Mikhin, S. O., Egorov, D. N., Koshkur, M. O., et al. (2024). Method for manufacturing a thin-film humidity sensor (Patent No. RU 2820096). [in Russian language]
7. Precision Component Analyzers WK6430B, WK6440B: Measurement Instrument Type Description No. 33772-07. (2006). Rosstandart. [in Russian language]
8. Precision Laboratory Humidity Analyzer S4000 modifications Remote, Climatic, RS and TRS: User Manual. Version 19. (2008). ZAO "Regulyar". [in Russian language]
9. Wet Gas Generators MG100/MG101: Measurement Instrument Type Description No. 16525-97. (2008). FSUE "VNIIMS". [in Russian language]
10. GOST 9293-74 (ISO 2435-73). Gaseous and liquid nitrogen. Specifications. (2007). Standartinform. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 700 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2025.09.pp.056-062

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2025.09.pp.056-062

and fill out the  form  

 

.

 

 
Поиск
На сайте?
Сейчас на сайте находятся:
 127 гостей на сайте
Опросы
Понравился Вам сайт журнала?
 
Баннер
Rambler's Top100 Яндекс цитирования